ترغب بنشر مسار تعليمي؟ اضغط هنا

The Shape of the Big Blue Bump as Revealed by Spectropolarimetry

36   0   0.0 ( 0 )
 نشر من قبل Makoto Kishimoto
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Antonucci




اسأل ChatGPT حول البحث

Thermal models for the quasar Big Blue Bump generally lead to bound-free continuum features, which may be in absorption or emission. Searches for Lyman edges attributable to quasar atmospheres (in particular accretion disk atmospheres) have been ambiguous at best, but various relativistic and non-LTE effects may make them hard to detect. The Balmer edge features tentatively predicted by such models might be easier to detect since theyd form farther out in the potential wells. These can be sought in certain cases using spectropolarimetry to remove the effects of atomic emission (i.e. the Small Blue Bump) from the spectrum. We do find apparent Balmer edges in absorption in several quasars using this method! Although the features we see are believable and apparently common, more data and more modeling are needed to verify that they are best interpreted as atmospheric Balmer edges.



قيم البحث

اقرأ أيضاً

One primary difficulty in understanding the nature of the putative accretion disk in the central engine of AGNs is that some of its key intrinsic spectral signatures are buried under the emissions from the surrounding regions, i.e. the broad line reg ion (BLR) and the obscuring torus. We argue here that these signatures can be revealed by using optical and near-IR polarization. At least in some quasars, the polarization is seen only in the continuum and is not shared by emission lines. In this case, the polarized flux is considered to show the intrinsic spectrum interior to the BLR, removing off the emissions from the BLR and torus. We have used this polarization to reveal the Balmer-edge feature and near-IR spectral shape of the central engine, both of which are important for testing the fundamental aspects of the models.
The near-infrared shape of the big blue bump component in quasar spectra has been essentially unknown. It usually cannot be observed directly, due to the strong hot dust emission which dominates quasar spectra longward of ~1micron. However this is qu ite an important part of the spectrum theoretically. At least bare disk models provide quite a robust prediction for the overall continuum shape in the near-infrared. Self-gravity should become important in the outer, near-infrared emitting regions of the putative disk, possibly leaving a signature of disk truncation in the near-infrared. We propose here that this important part of the spectrum can be revealed for the first time by observing polarized flux from normal quasars. At least in some polarized quasars, the emission lines are all unpolarized and so the polarized flux should originate interior to the broad line region, and therefore also interior to the dust emitting region. This can then be used to eliminate the dust emission. We present the results of near-infrared polarimetry for such three quasars (Ton202, 4C37.43, B2 1208+32). The data for Ton202 have the highest S/N, and the near-infrared polarized flux in this case is measured to have quite a blue shape, nu^+0.42+-0.29 in F_nu, intriguingly consistent with the simple multi-temperature black body, bare disk prediction of nu^+1/3. All these data, although still with quite low S/N for the other two objects, demonstrate the unique potential of the technique with future better data. We also present similar data for other quasars and radio galaxies, and briefly discuss the nature of the polarization.
We determined the spin value of supermassive black hole (SMBH) in active galactic nuclei (AGN) with investigated ultraviolet-to-optical spectral energy distribution, presented in the sample of Shang et al. (2005). The estimates of the spin values hav e been produced at the base of the standard geometrically thin accretion disk model and with using the results of the polarimetric observations. The polarimetric observations are very important for determining the inclination angle of AGN disk. We presented the results of our determinations of the radiation efficiency of the accretion flow and values of the spins of SMBHs, that derives the coefficient of radiation efficiency. The majority of SMBHs of AGNs from Shang et al. (2005) sample are to be the Kerr black holes with the high spin value.
Blue axion isocurvature perturbations are both theoretically well-motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spe ctra were analytic, which left a gap in the predicted spectrum in the break region due to the non-applicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.
We present nebular phase optical and near-infrared spectroscopy of the Type Ia supernova (SN) 2017cbv. The early light curves of SN~2017cbv showed a prominent blue bump in the $U$, $B$ and $g$ bands lasting for $sim$5 d. One interpretation of the ear ly light curve was that the excess blue light was due to shocking of the SN ejecta against a nondegenerate companion star -- a signature of the single degenerate scenario. If this is the correct interpretation, the interaction between the SN ejecta and the companion star could result in significant H$alpha$ (or helium) emission at late times, possibly along with other species, depending on the companion star and its orbital separation. A search for H$alpha$ emission in our +302 d spectrum yields a nondetection, with a $L_{Halpha}$$<$8.0$times$10$^{35}$ erg/s (given an assumed distance of $D$=12.3 Mpc), which we have verified by implanting simulated H$alpha$ emission into our data. We make a quantitative comparison to models of swept-up material stripped from a nondegenerate companion star, and limit the mass of hydrogen that might remain undetected to $M_{rm H} < 1 times 10^{-4}$ $rm M_{odot}$. A similar analysis of helium star related lines yields a $M_{rm He} < 5 times 10^{-4}$ $rm M_{odot}$. Taken at face value, these results argue against a nondegenerate H or He-rich companion in Roche lobe overflow as the progenitor of SN 2017cbv. Alternatively, there could be weaknesses in the envelope-stripping and radiative transfer models necessary to interpret the strong H and He flux limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا