ترغب بنشر مسار تعليمي؟ اضغط هنا

The near-IR shape of the big blue bump emission from quasars: under the hot dust emission

43   0   0.0 ( 0 )
 نشر من قبل Makoto Kishimoto
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Makoto Kishimoto




اسأل ChatGPT حول البحث

One primary difficulty in understanding the nature of the putative accretion disk in the central engine of AGNs is that some of its key intrinsic spectral signatures are buried under the emissions from the surrounding regions, i.e. the broad line region (BLR) and the obscuring torus. We argue here that these signatures can be revealed by using optical and near-IR polarization. At least in some quasars, the polarization is seen only in the continuum and is not shared by emission lines. In this case, the polarized flux is considered to show the intrinsic spectrum interior to the BLR, removing off the emissions from the BLR and torus. We have used this polarization to reveal the Balmer-edge feature and near-IR spectral shape of the central engine, both of which are important for testing the fundamental aspects of the models.



قيم البحث

اقرأ أيضاً

The near-infrared shape of the big blue bump component in quasar spectra has been essentially unknown. It usually cannot be observed directly, due to the strong hot dust emission which dominates quasar spectra longward of ~1micron. However this is qu ite an important part of the spectrum theoretically. At least bare disk models provide quite a robust prediction for the overall continuum shape in the near-infrared. Self-gravity should become important in the outer, near-infrared emitting regions of the putative disk, possibly leaving a signature of disk truncation in the near-infrared. We propose here that this important part of the spectrum can be revealed for the first time by observing polarized flux from normal quasars. At least in some polarized quasars, the emission lines are all unpolarized and so the polarized flux should originate interior to the broad line region, and therefore also interior to the dust emitting region. This can then be used to eliminate the dust emission. We present the results of near-infrared polarimetry for such three quasars (Ton202, 4C37.43, B2 1208+32). The data for Ton202 have the highest S/N, and the near-infrared polarized flux in this case is measured to have quite a blue shape, nu^+0.42+-0.29 in F_nu, intriguingly consistent with the simple multi-temperature black body, bare disk prediction of nu^+1/3. All these data, although still with quite low S/N for the other two objects, demonstrate the unique potential of the technique with future better data. We also present similar data for other quasars and radio galaxies, and briefly discuss the nature of the polarization.
35 - R. Antonucci 2003
Thermal models for the quasar Big Blue Bump generally lead to bound-free continuum features, which may be in absorption or emission. Searches for Lyman edges attributable to quasar atmospheres (in particular accretion disk atmospheres) have been ambi guous at best, but various relativistic and non-LTE effects may make them hard to detect. The Balmer edge features tentatively predicted by such models might be easier to detect since theyd form farther out in the potential wells. These can be sought in certain cases using spectropolarimetry to remove the effects of atomic emission (i.e. the Small Blue Bump) from the spectrum. We do find apparent Balmer edges in absorption in several quasars using this method! Although the features we see are believable and apparently common, more data and more modeling are needed to verify that they are best interpreted as atmospheric Balmer edges.
105 - F. Bertoldi 2003
We report observations of three SDSS z>6 QSOs at 250 GHz (1.2mm) using the 117-channel Max-Planck Millimeter Bolometer (MAMBO-2) array at the IRAM 30-meter telescope. J1148+5251 (z=6.41) and J1048+4637 (z=6.23) were detected with 250 GHz flux densiti es of 5.0 +- 0.6 mJy and 3.0 +- 0.4 mJy, respectively. J1630+4012 (z=6.05) was not detected with a 3 sigma upper limit of 1.8 mJy. Upper flux density limits from VLA observations at 43 GHz for J1148+5251 and J1048+4637 imply steeply rising spectra, indicative of thermal infrared emission from warm dust. The far-infrared luminosities are estimated to be ~10^13 L_sun, and the dust masses ~10^8 M_sun, assuming Galactic dust properties. The presence of large amounts of dust in the highest redshift QSOs indicates that dust formation must be rapid during the early evolution of QSO host galaxies. Dust absorption may hinder the escape of ionizing photons which reionize the intergalactic medium at this early epoch.
The detection of powerful near-infrared emission in high redshift (z>5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emi ssion in the rest frame NIR over more local AGN spectral energy distribution (SED) templates. In order to test if this is a result of the very high luminosities and redshifts, we construct mean SEDs from the latest SDSS quasar catalogue in combination with MIR data from the WISE preliminary data release for several redshift and luminosity bins. Comparing these mean SEDs with a large sample of z>5 quasars we could not identify any significant trends of the NIR spectral slope with luminosity or redshift in the regime 2.5 < z < 6 and 10^45 < nuL_nu(1350AA) < 10^47 erg/s. In addition to the NIR regime, our combined Herschel and Spitzer photometry provides full infrared SED coverage of the same sample of z>5 quasars. These observations reveal strong FIR emission (L_FIR > 10^13 L_sun) in seven objects, possibly indicating star-formation rates of several thousand solar masses per year. The FIR excess emission has unusally high temperatures (T ~ 65 K) which is in contrast to the temperature typically expected from studies at lower redshift (T ~ 45 K). These objects are currently being investigated in more detail.
864 - R. Wang , C. L. Carilli , J. Wagg 2008
We report new continuum observations of fourteen z~6 quasars at 250 GHz and fourteen quasars at 1.4 GHz. We summarize all recent millimeter and radio observations of the sample of the thirty-three quasars known with 5.71<=z<=6.43, and present a study of the rest frame far-infrared (FIR) properties of this sample. These quasars were observed with the Max Plank Millimeter Bolometer Array (MAMBO) at 250 GHz with mJy sensitivity, and 30% of them were detected. We also recover the average 250 GHz flux density of the MAMBO undetected sources at 4 sigma, by stacking the on-source measurements. The derived mean radio-to-UV spectral energy distributions (SEDs) of the full sample and the 250 GHz non-detections show no significant difference from that of lower-redshift optical quasars. Obvious FIR excesses are seen in the individual SEDs of the strong 250 GHz detections, with FIR-to-radio emission ratios consistent with that of typical star forming galaxies. Most 250 GHz-detected sources follow the L_{FIR}--L_{bol} relationship derived from a sample of local IR luminous quasars (L_{IR}>10^{12}L_{odot}), while the average L_{FIR}/L_{bol} ratio of the non-detections is consistent with that of the optically-selected PG quasars. The MAMBO detections also tend to have weaker Lyalpha emission than the non-detected sources. We discuss possible FIR dust heating sources, and critically assess the possibility of active star formation in the host galaxies of the z~6 quasars. The average star formation rate of the MAMBO non-detections is likely to be less than a few hundred M_{odot} yr^{-1}, but in the strong detections, the host galaxy star formation is probably at a rate of gtrsim10^{3} M_{odot} yr^{-1}, which dominates the FIR dust heating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا