ترغب بنشر مسار تعليمي؟ اضغط هنا

The far-IR/radio correlation in the ISO era

74   0   0.0 ( 0 )
 نشر من قبل Daniele Pierini
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Pierini




اسأل ChatGPT حول البحث

We present the correlation between the far-infrared (FIR) and radio emissions from a composite sample of 72 nearby normal galaxies observed with the ISOPHOT instrument on board the Infrared Space Observatory. The galaxies in the sample have measurements at three FIR wavelengths (60, 100 and 170 micron), which allowed a direct determination of the warm and cold FIR emission components. This is the first time that the correlation has been established for the total FIR luminosity, of which most is carried by the cold dust component predominantly emitting longwards of the spectral coverage of IRAS. The slope of this correlation is slightly non-linear (1.10+/-0.03). Separate correlations between the warm and cold FIR emission components and the radio emission have also been derived. The slope of the warm FIR/radio correlation was found to be linear (1.03+/-0.03). For the cold FIR/radio correlation we found a slightly non-linear (1.13+/-0.04) slope. We qualitatively interpret the correlations in terms of star formation rate and find that both the FIR and radio emissions may be consistent with a non-linear dependence on star formation rate for galaxies not undergoing starburst activity.



قيم البحث

اقرأ أيضاً

Based on far-infrared spectroscopy of a small sample of nearby infrared-bright and ultraluminous infrared galaxies (ULIRGs) with the ISO Long Wavelength Spectrometer, we find a dramatic progression in ionic/atomic fine-structure emission line and mol ecular/atomic absorption line characteristics in these galaxies extending from strong [O III]52,88 and [N III]57 micron line emission to detection of only faint [C II]158 micron line emission from gas in photodissociation regions in the ULIRGs. The molecular absorption spectra show varying excitation as well, extending from galaxies in which the molecular population mainly occupies the ground state to galaxies in which there is significant population in higher levels. In the case of the prototypical ULIRG, the merger galaxy Arp 220, the spectrum is dominated by absorption lines of OH, H2O, CH, and [O I]. Low [O III]88 micron line flux relative to the integrated far-infrared flux correlates with low excitation and does not appear to be due to far-infrared extinction or to density effects. A progression toward soft radiation fields or very dusty HII regions may explain these effects.
We present a multi-wavelength analysis of star-forming galaxies in the massive cluster MS0451.6-0305 at z $sim$ 0.54 to shed new light on the evolution of the far-infrared-radio relationship in distant rich clusters. We have derived total infrared lu minosities for a spectroscopically confirmed sample of cluster and field galaxies through an empirical relation based on $Spitzer$ MIPS 24 $mu$m photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We find the ratio of far-infrared to radio luminosity for galaxies in an intermediate redshift cluster to be $q_{rm FIR}$ = 1.80$pm$0.15 with a dispersion of 0.53. Due to the large intrinsic dispersion, we do not find any observable change in this value with either redshift or environment. However, a higher percentage of galaxies in this cluster show an excess in their radio fluxes when compared to low redshift clusters ($27^{+23}_{-13}%$ to $11%$), suggestive of a cluster enhancement of radio-excess sources at this earlier epoch. In addition, the far-infrared-radio relationship for blue galaxies, where $q_{rm FIR}$ = 2.01$pm$0.14 with a dispersion of 0.35, is consistent with the predicted value from the field relationship, although these results are based on a sample from a single cluster.
Using extremely deep (rms 3.3 microJy/bm) 1.4GHz sub-arcsecond resolution MERLIN + VLA radio observations of a 8.5 by 8.5 field centred upon the Hubble Deep Field North, in conjunction with Spitzer 24 micron data we present an investigation of the ra dio-MIR correlation at very low flux densities. By stacking individual sources within these data we are able to extend the MIR-radio correlation to the extremely faint (~microJy and even sub-microJy) radio source population. Tentatively we demonstrate a small deviation from the correlation for the faintest MIR sources. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer at low luminosities.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
117 - R. J. Ivison 2010
We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4GHz) ~ 10^22.7 W/Hz, where AGN are starting to dominate the radio power density, and of weaker correlations with z and T(d). From our 250-um-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L(1.4GHz), L(IR), T(d) and z, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) goes as (1+z)^gamma, where gamma = -0.04 +/- 0.03 at z=0-2; however, discounting the least reliable data at z<0.5 we find gamma = -0.26 +/- 0.07, modest evolution which may be related to the radio background seen by ARCADE2, perhaps driven by <10uJy radio activity amongst ordinary star-forming galaxies at z>1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا