ترغب بنشر مسار تعليمي؟ اضغط هنا

The Far-Infrared-Radio Correlation in MS0451-03

127   0   0.0 ( 0 )
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multi-wavelength analysis of star-forming galaxies in the massive cluster MS0451.6-0305 at z $sim$ 0.54 to shed new light on the evolution of the far-infrared-radio relationship in distant rich clusters. We have derived total infrared luminosities for a spectroscopically confirmed sample of cluster and field galaxies through an empirical relation based on $Spitzer$ MIPS 24 $mu$m photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We find the ratio of far-infrared to radio luminosity for galaxies in an intermediate redshift cluster to be $q_{rm FIR}$ = 1.80$pm$0.15 with a dispersion of 0.53. Due to the large intrinsic dispersion, we do not find any observable change in this value with either redshift or environment. However, a higher percentage of galaxies in this cluster show an excess in their radio fluxes when compared to low redshift clusters ($27^{+23}_{-13}%$ to $11%$), suggestive of a cluster enhancement of radio-excess sources at this earlier epoch. In addition, the far-infrared-radio relationship for blue galaxies, where $q_{rm FIR}$ = 2.01$pm$0.14 with a dispersion of 0.35, is consistent with the predicted value from the field relationship, although these results are based on a sample from a single cluster.



قيم البحث

اقرأ أيضاً

In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 dwarf galaxies ($M_* < 10^9 M_odot$), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is fo und that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude ($F_{1.4GHz} propto F_{FIR}^{1.00pm0.08}$). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a conspiracy to keep the FIR-to-radio ratio generally constant for dwarf galaxies. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the conspiracy to keep the FRC alive.
The radio and far-infrared luminosities of star-forming galaxies are tightly correlated over several orders of magnitude; this is known as the far-infrared radio correlation (FIRC). Previous studies have shown that a host of factors conspire to maint ain a tight and linear FIRC, despite many models predicting deviation. This discrepancy between expectations and observations is concerning since a linear FIRC underpins the use of radio luminosity as a star-formation rate indicator. Using LOFAR 150MHz, FIRST 1.4 GHz, and Herschel infrared luminosities derived from the new LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic (250$mathrm{mu m}$) FIRC at low and high radio frequencies. We use statistical techniques to probe the FIRC for an optically-selected sample of 4,082 emission-line classified star-forming galaxies as a function of redshift, effective dust temperature, stellar mass, specific star formation rate, and mid-infrared colour (an empirical proxy for specific star formation rate). Although the average FIRC at high radio frequency is consistent with expectations based on a standard power-law radio spectrum, the average correlation at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz, and find that the FIRC varies with stellar mass, dust temperature and specific star formation rate, whether the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can explain the variation, to within 1$sigma$, seen in the FIRC over mid-infrared colour by a combination of dust temperature, redshift, and stellar mass using a Bayesian partial correlation technique.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
124 - R. J. Ivison 2010
We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4GHz) ~ 10^22.7 W/Hz, where AGN are starting to dominate the radio power density, and of weaker correlations with z and T(d). From our 250-um-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L(1.4GHz), L(IR), T(d) and z, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) goes as (1+z)^gamma, where gamma = -0.04 +/- 0.03 at z=0-2; however, discounting the least reliable data at z<0.5 we find gamma = -0.26 +/- 0.07, modest evolution which may be related to the radio background seen by ARCADE2, perhaps driven by <10uJy radio activity amongst ordinary star-forming galaxies at z>1.
86 - A. Omar , A. Paswan 2017
A tight far-infrared - radio correlation similar to that in star-forming late-type galaxies is also indicated in star-forming blue early-type galaxies, in which the nuclear optical-line emissions are primarily due to star-forming activities without a significant contribution from active galactic nuclei. The average value of far-infrared to 1.4 GHz radio flux-ratio commonly represented as the $q$ parameter is estimated to be $2.35pm0.05$ with a scatter of 0.16 dex. The average star formation rate estimated using 1.4 GHz radio continuum is $sim6$ M$_{odot}$ yr$^{-1}$ in good agreement with those estimated using far-infrared and H$alpha$ luminosities. The radio emission is detected mainly from central region which could be associated with the star-forming activities, most likely triggered by recent tidal interactions. The average thermal contribution to total radio flux is estimated to be $sim12$ per cent. The average value of the magnetic field strengths in the star-forming early-type galaxies is estimated to be 12$^{+11}_{-4}$ $mu$G. These magnetic fields are very likely generated via fast amplification in small-scale turbulent dynamos acting in the star-bursting regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا