ﻻ يوجد ملخص باللغة العربية
Several high-z (z > 5.7) quasars have been found in the course of Sloan Digital Sky Survey. The presence of such very high-z quasars is expected to give constraints on early structure formation. On one hand, it is suggested that these most luminous objects at high redshift are biased toward the highly magnified objects by gravitational lensing. To clarify the effect of gravitational lensing on the high-z quasars, we began the imaging survey of intervening lensing galaxies. Indeed our previous optical image showed that SDSSp J104433.04+012502.2 at z=5.74 is gravitationally magnified by a factor 2. In this paper, we report our new optical imaging of other two high-z quasars, SDSSp J103027.10+052455.0 at z=6.28 and SDSSp J130608.26+035626.3 at z=5.99. Since we find neither intervening galaxy nor counter image with i^{prime} < 25.4-25.8 around each quasar, we conclude that they are not strongly magnified regardless that a lens galaxy is dusty.
We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extende
We present new HST WFPC3 imaging of four gravitationally lensed quasars: MG 0414+0534; RXJ 0911+0551; B 1422+231; WFI J2026-4536. In three of these systems we detect wavelength-dependent microlensing, which we use to place constraints on the sizes an
Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first $z = 0 - 1$ survey for HI and OH absorption towards the gravitationally lensed quasars PKSB1830$-$211 and MGJ041
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed
We report on submillimetre observations of three high redshift (z>6) quasars, made using the SCUBA camera on the JCMT. Only one of the sample was detected at 850um-- SDSS J1148+5251 (z=6.43). It was also detected (>3 sigma significance) at 450um, one