ترغب بنشر مسار تعليمي؟ اضغط هنا

Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars

85   0   0.0 ( 0 )
 نشر من قبل James Allison
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first $z = 0 - 1$ survey for HI and OH absorption towards the gravitationally lensed quasars PKSB1830$-$211 and MGJ0414$+$0534. Although we detected all previously reported intervening systems towards PKSB1830$-$211, in the case of MGJ0414+0534 three systems were not found, indicating that the original identifications may have been confused with radio frequency interference. Given the sensitivity of our data, we find that our detection yield is consistent with the expected frequency of intervening HI systems estimated from previous surveys for 21-cm emission in nearby galaxies and $z sim 3$ damped Lyman $alpha$ absorbers. We find spectral variability in the $z = 0.886$ face-on spiral galaxy towards PKSB1830$-$211, from observations undertaken with the Westerbork Synthesis Radio Telescope in 1997/1998 and ASKAP BETA in 2014/2015. The HI equivalent width varies by a few per cent over approximately yearly time-scales. This long-term spectral variability is correlated between the north-east and south-west images of the core, and with the total flux density of the source, implying that it is observationally coupled to intrinsic changes in the quasar. The absence of any detectable variability in the ratio of HI associated with the two core images is in stark contrast to the behaviour previously seen in the molecular lines. We therefore infer that coherent opaque HI structures in this galaxy are larger than the parsec-scale molecular clouds found at mm-wavelengths.



قيم البحث

اقرأ أيضاً

We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extende d morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at $z_{s}=1.64.$ The Einstein Radius estimated from the DES images is $0.51$. DES J2200+0110 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at $z_{s}=2.38$ and absorption compatible with Mg II and Fe II at $z_{l}=0.799$, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. The Einstein Radius is $0.68$ corresponding to an enclosed mass of $1.6times10^{11},M_{odot}.$ Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
Submillimeter bright galaxies in the early Universe are vigorously forming stars at ~1000 times higher rate than the Milky Way. A large fraction of stars is formed in the central 1 kiloparsec region, that is comparable in size to massive, quiescent g alaxies found at the peak of the cosmic star formation history, and eventually the core of giant elliptical galaxies in the present-day Universe. However, the physical and kinematic properties inside a compact starburst core are poorly understood because dissecting it requires angular resolution even higher than the Hubble Space Telescope can offer. Here we report 550 parsec-resolution observations of gas and dust in the brightest unlensed submillimeter galaxy at z=4.3. We map out for the first time the spatial and kinematic structure of molecular gas inside the heavily dust-obscured core. The gas distribution is clumpy while the underlying disk is rotation-supported. Exploiting the high-quality map of molecular gas mass surface density, we find a strong evidence that the starburst disk is gravitationally unstable, implying that the self-gravity of gas overcomes the differential rotation and the internal pressure by stellar radiation feedback. The observed molecular gas would be consumed by star formation in a timescale of 100 million years, that is comparable to those in merging starburst galaxies. Our results suggest that the most extreme starburst in the early Universe originates from efficient star formation due to a gravitational instability in the central 2 kpc region.
We present new HST WFPC3 imaging of four gravitationally lensed quasars: MG 0414+0534; RXJ 0911+0551; B 1422+231; WFI J2026-4536. In three of these systems we detect wavelength-dependent microlensing, which we use to place constraints on the sizes an d temperature profiles of the accretion discs in each quasar. Accretion disc radius is assumed to vary with wavelength according to the power-law relationship $rpropto lambda^p$, equivalent to a radial temperature profile of $Tpropto r^{-1/p}$. The goal of this work is to search for deviations from standard thin disc theory, which predicts that radius goes as wavelength to the power $p=4/3$. We find a wide range of power-law indices, from $p=1.4^{+0.5}_{-0.4}$ in B 1422+231 to $p=2.3^{+0.5}_{-0.4}$ in WFI J2026-4536. The measured value of $p$ appears to correlate with the strength of the wavelength-dependent microlensing. We explore this issue with mock simulations using a fixed accretion disc with $p=1.5$, and find that cases where wavelength-dependent microlensing is small tend to under-estimate the value of $p$. This casts doubt on previous ensemble single-epoch measurements which have favoured low values using samples of lensed quasars that display only moderate chromatic effects. Using only our systems with strong chromatic microlensing we prefer $p>4/3$, corresponding to shallower temperature profiles than expected from standard thin disc theory.
Several high-z (z > 5.7) quasars have been found in the course of Sloan Digital Sky Survey. The presence of such very high-z quasars is expected to give constraints on early structure formation. On one hand, it is suggested that these most luminous o bjects at high redshift are biased toward the highly magnified objects by gravitational lensing. To clarify the effect of gravitational lensing on the high-z quasars, we began the imaging survey of intervening lensing galaxies. Indeed our previous optical image showed that SDSSp J104433.04+012502.2 at z=5.74 is gravitationally magnified by a factor 2. In this paper, we report our new optical imaging of other two high-z quasars, SDSSp J103027.10+052455.0 at z=6.28 and SDSSp J130608.26+035626.3 at z=5.99. Since we find neither intervening galaxy nor counter image with i^{prime} < 25.4-25.8 around each quasar, we conclude that they are not strongly magnified regardless that a lens galaxy is dusty.
How and when did galaxies form and assemble their stars and stellar mass? The answer to these questions, so crucial to astrophysics and cosmology, requires the full reconstruction of the so called cosmic star formation rate density (SFRD), i.e. the e volution of the average star formation rate per unit volume of the universe. While the SFRD has been reliably traced back to 10-11 billion years ago, its evolution is still poorly constrained at earlier cosmic epochs, and its estimate is mainly based on galaxies luminous in the ultraviolet and with low obscuration by dust. This limited knowledge is largely due to the lack of an unbiased census of all types of star-forming galaxies in the early universe. We present a new approach to find dust-obscured star-forming galaxies based on their emission at radio wavelengths coupled with the lack of optical counterparts. Here, we present a sample of 197 galaxies selected with this method. These systems were missed by previous surveys at optical and near-infrared wavelengths, and 22 of them are at very high redshift (i.e. z > 4.5). The contribution of these elusive systems to the SFRD is substantial and can be as high as 40% of the previously known SFRD based on UV-luminous galaxies. The mere existence of such heavily obscured galaxies in the first two billion years after the Big Bang opens new avenues to investigate the early phases of galaxy formation and evolution, and to understand the links between these systems and the massive galaxies which ceased their star formation at later cosmic times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا