ﻻ يوجد ملخص باللغة العربية
Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main beam intensities have been mapped to < -30 dB of their peak values by observing Jupiter with the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the pre-launch expectations. The full width at half maximum is a function of frequency and ranges from 0.82 degrees at 23 GHz to 0.21 degrees at 94 GHz; however, the beams are not Gaussian. We present: (a) the beam patterns for all ten differential radiometers and show that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAPs compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiters temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1-3% accuracy relative to the CMB dipole.
Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have
Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission. We define masks that excise regions of high foreground emission. The effectiveness of template fits to remove foregro
The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 stand
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The dat
We describe our methodology for comparing the WMAP measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data, and the tight constraints on cosmological pa