ترغب بنشر مسار تعليمي؟ اضغط هنا

Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

83   0   0.0 ( 0 )
 نشر من قبل Janet L. Weiland
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Kogut




اسأل ChatGPT حول البحث

The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are present in all WMAP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales theta < 5 deg, the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l > 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta > 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 < z_r < 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit LambdaCDM model, with best fit value tau = 0.17 +- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

قيم البحث

اقرأ أيضاً

We present a full-sky model of polarized Galactic microwave emission based on three years of observations by the Wilkinson Microwave Anisotropy Probe (WMAP) at frequencies from 23 to 94 GHz. The model compares maps of the Stokes Q and U components fr om each of the 5 WMAP frequency bands in order to separate synchrotron from dust emission, taking into account the spatial and frequency dependence of the synchrotron and dust components. This simple two-component model of the interstellar medium accounts for at least 97% of the polarized emission in the WMAP maps of the microwave sky. Synchrotron emission dominates the polarized foregrounds at frequencies below 50 GHz, and is comparable to the dust contribution at 65 GHz. The spectral index of the synchrotron component, derived solely from polarization data, is -3.2 averaged over the full sky, with a modestly flatter index on the Galactic plane. The synchrotron emission has mean polarization fraction 2--4% in the Galactic plane and rising to over 20% at high latitude, with prominent features such as the North Galactic Spur more polarized than the diffuse component. Thermal dust emission has polarization fraction 1% near the Galactic center, rising to 6% at the anti-center. Diffuse emission from high-latitude dust is also polarized with mean fractional polarization 0.036 +/- 0.011.
87 - L. Page , G. Hinshaw , E. Komatsu 2006
The Wilkinson Microwave Anisotropy Probe WMAP has mapped the entire sky in five frequency bands between 23 and 94 GHz with polarization sensitive radiometers. We present three-year full-sky maps of the polarization and analyze them for foreground emi ssion and cosmological implications. These observations open up a new window for understanding the universe. WMAP observes significant levels of polarized foreground emission due to both Galactic synchrotron radiation and thermal dust emission. The least contaminated channel is at 61 GHz. Informed by a model of the Galactic foreground emission, we subtract the foreground emission from the maps. In the foreground corrected maps, for l=2-6, we detect l(l+1) C_l^{EE} / (2 pi) = 0.086 +-0.029 microkelvin^2. This is interpreted as the result of rescattering of the CMB by free electrons released during reionization and corresponds to an optical depth of tau = 0.10 +- 0.03. We see no evidence for B-modes, limiting them to l(l+1) C_l^{BB} / (2 pi) = -0.04 +- 0.03 microkelvin^2. We find that the limit from the polarization signals alone is r<2.2 (95% CL) corresponding to a limit on the cosmic density of gravitational waves of Omega_{GW}h^2 < 5 times 10^{-12}. From the full WMAP analysis, we find r<0.55 (95% CL) corresponding to a limit of Omega_{GW}h^2 < 10^{-12} (95% CL).
108 - C. Bennett 2003
Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission. We define masks that excise regions of high foreground emission. The effectiveness of template fits to remove foregro und emission from the WMAP data is examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We construct a model of the Galactic emission components. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta ~ -2.5) near star-forming regions, especially in the plane, and steepest (beta ~ -3) in the halo. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta < -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta ~ 2.2. Microwave and H alpha measurements of the ionized gas agree. Spinning dust emission is limited to < ~5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +- 1.4) 10^{-3} microK^2 sr at Q-band and negligible levels at V-band and W-band.
74 - G. Hinshaw 2003
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The dat a are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to l~350. The spectrum clearly exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and it provides strong support for adiabatic initial conditions. Kogut et al. (2003) analyze the C_l^TE power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by ~30% on degree angular scales, due to secondary scattering.
69 - L. Verde 2003
We describe our methodology for comparing the WMAP measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data, and the tight constraints on cosmological pa rameters that are derived, require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best fit cosmological parameters and their uncertainties. We add to the WMAP data the l>~700 CBI and ACBAR measurements of the CMB, the galaxy power spectrum at z~0 obtained from the 2dF galaxy redshift survey (2dFGRS), and the matter power spectrum at z~3 as measured with the Ly alpha forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the non-linear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا