ترغب بنشر مسار تعليمي؟ اضغط هنا

Are the hosts of Gamma-Ray Bursts sub-luminous and blue galaxies?

62   0   0.0 ( 0 )
 نشر من قبل Emeric Le Floc'h
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present K-band imaging observations of ten Gamma-Ray Burst (GRB) host galaxies. We compare their observed and absolute K magnitudes as well as their R-K colours with those of other distant sources detected in various optical, near-infrared, mid-infrared and submillimeter deep surveys. We find that the GRB host galaxies, most of them lying at 0.5<z<1.5, exhibit very blue colours, comparable to those of the faint blue star-forming sources at high redshift. They are sub-luminous in the K-band, suggesting a low stellar mass content. We do not find any GRB hosts harbouring R- and K-band properties similar to those characterizing the luminous infrared/submillimeter sources and the extremely red starbursts. Should GRBs be regarded as an unbiased probe of star-forming activity, this lack of luminous and/or reddened objects among the GRB host sample might reveal that the detection of GRB optical afterglows is likely biased toward unobscured galaxies. It would moreover support the idea that a large fraction of the optically-dark GRBs occur within dust-enshrouded regions of star formation. On the other hand, our result might also simply reflect intrinsic properties of GRB host galaxies experiencing a first episode of very massive star formation and characterized by a rather weak underlying stellar population. Finally, we compute the absolute B magnitudes for the whole sample of GRB host galaxies with known redshifts and detected at optical wavelengths. We find that the latter appear statistically even less luminous than the sub-luminous blue sources which mostly contributed to the B-band light emitted at high redshift. This indicates that the formation of GRBs could be favoured in particular systems with very low luminosities and, therefore, low metallicities. (Abridged)


قيم البحث

اقرأ أيضاً

436 - D.J. Pisano 2007
Luminous Compact Blue Galaxies (LCBGs) are common at z~1, contributing significantly to the total star formation rate density. By z~0, they are a factor of ten rarer. While we know that LCBGs evolve rapidly, we do not know what drives their evolution nor into what types of galaxies they evolve. We present the results of a single-dish HI survey of local LCBGs undertaken to address these questions. Our results indicate that LCBGs have M(HI) and M(DYN) consistent with low-mass spirals, but typically exhaust their gas reservoirs in less than 2 Gyr. Overall, the properties of LCBGs are consistent with them evolving into high-mass dwarf elliptical or dwarf irregular galaxies or low-mass, late-type spiral galaxies.
To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe , factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often $O(10{rm Gyr})$). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., $z>1$) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {em current} available data. (Abridged)
Theoretically long gamma-ray bursts (GRBs) are expected to happen in low-metallicity environments, because in a single massive star scenario, low iron abundance prevents loss of angular momentum through stellar wind, resulting in ultra-relativistic j ets and the burst. In this sense, not just a simple metallicity measurement but also low iron abundance ([Fe/H]<-1.0) is essentially important. Observationally, however, oxygen abundance has been measured more often due to stronger emission. In terms of oxygen abundance, some GRBs have been reported to be hosted by high-metallicity star-forming galaxies, in tension with theoretical predictions. Here we compare iron and oxygen abundances for the first time for GRB host galaxies (GRB 980425 and 080517) based on the emission-line diagnostics. The estimated total iron abundances, including iron in both gas and dust, are well below the solar value. The total iron abundances can be explained by the typical value of theoretical predictions ([Fe/H]<-1.0), despite high oxygen abundance in one of them. According to our iron abundance measurements, the single massive star scenario still survives even if the oxygen abundance of the host is very high, such as the solar value. Relying only on oxygen abundance could mislead us on the origin of the GRBs. The measured oxygen-to-iron ratios, [O/Fe], can be comparable to the highest values among the iron-measured galaxies in the Sloan Digital Sky Survey. Possible theoretical explanations of such high [O/Fe] include the young age of the hosts, top-heavy initial mass function, and fallback mechanism of the iron element in supernova explosions.
56 - J. X. Prochaska 2005
The rapid succession of discovery of short--duration hard--spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gra vitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long--duration soft--spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short--duration hard--spectrum GRBs. In particular, we present the Gemini--North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate--resolution (R~6000) spectrum of a fourth host. We find that these short--hard GRBs originate in a variety of low-redshift (z<1) environments that differ substantially from those of long--soft GRBs, both on individual galaxy scales and on galaxy--cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1 Msol/hr) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star--black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 Msol/yr. Therefore, it appears that like supernovae of Type Ia, the progenitors of short--hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of source s, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا