ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts

57   0   0.0 ( 0 )
 نشر من قبل Jason X. Prochaska
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. X. Prochaska




اسأل ChatGPT حول البحث

The rapid succession of discovery of short--duration hard--spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long--duration soft--spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short--duration hard--spectrum GRBs. In particular, we present the Gemini--North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate--resolution (R~6000) spectrum of a fourth host. We find that these short--hard GRBs originate in a variety of low-redshift (z<1) environments that differ substantially from those of long--soft GRBs, both on individual galaxy scales and on galaxy--cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1 Msol/hr) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star--black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 Msol/yr. Therefore, it appears that like supernovae of Type Ia, the progenitors of short--hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.



قيم البحث

اقرأ أيضاً

We investigate the large-scale angular distribution of the short-Gamma ray bursts (SGRBs) from BATSE experiment, using a new coordinates-free method. The analyses performed take into account the angular correlations induced by the non-uniform sky exp osure during the experiment, and the uncertainty in the measured angular coordinates. Comparising the large-scale angular correlations from the data with those expected from simulations using the exposure function we find similar features. Additionally, confronting the large-angle correlations computed from the data with those obtained from simulated maps produced under the assumption of statistical isotropy we found that they are incompatible at 95% confidence level. However, such differences are restricted to the angular scales 36o - 45o, which are likely to be due to the non-uniform sky exposure. This result strongly suggests that the set of SGRBs from BATSE are intrinsically isotropic. Moreover, we also investigated a possible large-angle correlation of these data with the supergalactic plane. No evidence for such large-scale anisotropy was found.
We consider the spatial offsets of short hard gamma-ray bursts (SHBs) from their host galaxies. We show that all SHBs with extended duration soft emission components lie very close to their hosts. We suggest that NS-BH binary mergers offer a natural explanation for the properties of this extended duration/low offset group. SHBs with large offsets have no observed extended emission components and are less likely to have an optically detected afterglow, properties consistent with NS-NS binary mergers occurring in low density environments.
256 - Davide Lazzati 2001
We report the discovery of a transient and fading hard X-ray emission in the BATSE lightcurves of a sample of short gamma-ray bursts. We have summed each of the four channel BATSE light curves of 76 short bursts to uncover the average overall tempora l and spectral evolution of a possible transient signal following the prompt flux. We found an excess emission peaking ~30 s after the prompt one, detectable for ~100 s. The soft power-law spectrum and the time-evolution of this transient signal suggest that it is produced by the deceleration of a relativistic expanding source, as predicted by the afterglow model.
To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe , factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often $O(10{rm Gyr})$). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., $z>1$) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {em current} available data. (Abridged)
264 - Edo Berger 2013
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic core-collapse supernovae, their exclusive location in star-forming galaxies, and their strong correlation with bright ultraviolet regions within their host galaxies. Short GRBs have long been suspected on theoretical grounds to arise from compact object binary mergers (NS-NS or NS-BH). The discovery of short GRB afterglows in 2005, provided the first insight into their energy scale and environments, established a cosmological origin, a mix of host galaxy types, and an absence of associated supernovae. In this review I summarize nearly a decade of short GRB afterglow and host galaxy observations, and use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties of the circumburst environments. The preponderance of the evidence points to compact object binary progenitors, although some open questions remain. Based on this association, observations of short GRBs and their afterglows can shed light on the on- and off-axis electromagnetic counterparts of gravitational wave sources from the Advanced LIGO/Virgo experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا