ترغب بنشر مسار تعليمي؟ اضغط هنا

How Sample Completeness Affects Gamma-Ray Burst Classification

41   0   0.0 ( 0 )
 نشر من قبل Jon Hakkila
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised pattern recognition algorithms support the existence of three gamma-ray burst classes; Class I (long, large fluence bursts of intermediate spectral hardness), Class II (short, small fluence, hard bursts), and Class III (soft bursts of intermediate durations and fluences). The algorithms surprisingly assign larger membership to Class III than to either of the other two classes. A known systematic bias has been previously used to explain the existence of Class III in terms of Class I; this bias allows the fluences and durations of some bursts to be underestimated (Hakkila et al., ApJ 538, 165, 2000). We show that this bias primarily affects only the longest bursts and cannot explain the bulk of the Class III properties. We resolve the question of Class III existence by demonstrating how samples obtained using standard trigger mechanisms fail to preserve the duration characteristics of small peak flux bursts. Sample incompleteness is thus primarily responsible for the existence of Class III. In order to avoid this incompleteness, we show how a new dual timescale peak flux can be defined in terms of peak flux and fluence. The dual timescale peak flux preserves the duration distribution of faint bursts and correlates better with spectral hardness (and presumably redshift) than either peak flux or fluence. The techniques presented here are generic and have applicability to the studies of other transient events. The results also indicate that pattern recognition algorithms are sensitive to sample completeness; this can influence the study of large astronomical databases such as those found in a Virtual Observatory.

قيم البحث

اقرأ أيضاً

232 - Richard J. Roiger 2000
We use ESX, a product of Information Acumen Corporation, to perform unsupervised learning on a data set containing 797 gamma-ray bursts taken from the BATSE 3B catalog. Assuming all attributes to be distributed logNormally, Mukherjee et al. (1998) an alyzed these same data using a statistical cluster analysis. Utilizing the logarithmic values for T90 duration, total fluence, and hardness ratio HR321 their results showed the instances formed three classes. Class I contained long/bright/intermediate bursts, class II consisted of short/faint/hard bursts and class III was represented by intermediate/intermediate/soft bursts. When ESX was presented with these data and restricted to forming a small number of classes, the two classes found by previous standard techniques were determined. However, when ESX was allowed to form more than two classes, four classes were created. One of the four classes contained a majority of short bursts, a second class consisted of mostly intermediate bursts, and the final two classes were subsets of the Class I (long) bursts determined by Mukherjee et al. We hypothesize that systematic biases may be responsible for this variation.
164 - K.Zhang , Z.B.Zhang , Y.F.Huang 2020
We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations ($T_{i nt}$), isotropic energies of prompt gamma-rays ($E_{gamma, iso}$) and redshifts ($z$) of their host galaxies are log-normally distributed for both the radio-loud and radio-quiet samples except those GRBs without any radio detections. Based on the distinct distributions of $T_{int}$, $E_{gamma, iso}$, the circum-burst medium density ($n$) and the isotropic equivalent energy of radio afterglows ($L_{ u,p}$), we confirm that the GRB radio afterglows are really better to be divided into the dim and the bright types. However, it is noticeable that the distributions of flux densities ($F_{host}$) from host galaxies of both classes of radio afterglows are intrinsically quite similar. Meanwhile, we point out that the radio-none sample is also obviously different from the above two samples with radio afterglows observed, according to the cumulative frequency distributions of the $T_{int}$ and the $E_{gamma, iso}$, together with correlations between $T_{int}$ and $z$. In addition, a positive correlation between $E_{gamma, iso}$ and $L_{ u,p}$ is found in the radio-loud samples especially for the supernova-associated GRBs. Besides, we also find this positive correlation in the radio-quiet sample. A negative correlation between $T_{int}$ and $z$ is confirmed to hold for the radio-quiet sample too. The dividing line between short and long GRBs in the rest frame is at $T_{int}simeq$1 s. Consequently, we propose that the radio-loud, the radio-quiet and the radio-none GRBs could be originated from different progenitors.
We present a catalog of radio afterglow observations of gamma-ray bursts (GRBs) over a 14 year period from 1997 to 2011. Our sample of 304 afterglows consists of 2995 flux density measurements (including upper limits) at frequencies between 0.6 GHz a nd 660 GHz, with the majority of data taken at 8.5 GHz frequency band (1539 measurements). We use this dataset to carry out a statistical analysis of the radio-selected sample. The detection rate of radio afterglows has stayed unchanged almost at 31% before and after the launch of the {em Swift} satellite. The canonical long-duration GRB radio light curve at 8.5 GHz peaks at 3-6 days in the source rest frame, with a median peak luminosity of $10^{31}$ erg s$^{-1}$ Hz$^{-1}$. The peak radio luminosities for short-hard bursts, X-ray flashes and the supernova-GRB classes are an order of magnitude or more fainter than this value. There are clear relationships between the detectability of a radio afterglow and the fluence or energy of a GRB, and the X-ray or optical brightness of the afterglow. However, we find few significant correlations between these same GRB and afterglow properties and the peak radio flux density. We also produce synthetic light curves at centimeter (cm) and millimeter (mm) bands using a range of blastwave and microphysics parameters derived from multiwavelength afterglow modeling, and we use them to compare to the radio sample. Finding agreement, we extrapolate this behavior to predict the cm and mm behavior of GRBs observed by the Expanded Very Large Array and the Atacama Large Millimeter Array.
90 - J. Ripa , C. Wigger , D. Huja 2010
A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is studied statistically to determine the number of GRB groups. Previous studies based on the BATSE Catalog and recently on the Swift data claim the existence of an intermedia te GRB group, besides the long and short groups. Using only the GRB durations T90 and chi^2 or F-test, we have not found any statistically significant intermediate group. However, the maximum likelihood ratio test, one-dimensional as well as two-dimensional hardness vs. T90 plane, reveal the reality of an intermediate group. Hence, the existence of this group follows not only from the BATSE and Swift datasets, but also from the RHESSI results.
Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection bia ses, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 textit{BeppoSAX} and textit{Swift} GRB host galaxies (at an average redshift of $z,=,3.1$) located in the {it Herschel} Astrophysical Terahertz Large Area Survey, the {it Herschel} Virgo Cluster Survey, the {it Herschel} Fornax Cluster Survey, the {it Herschel} Stripe 82 Survey and the {it Herschel} Multi-tiered Extragalactic Survey, totalling $880$ deg$^2$, or $sim 3$% of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale {it Herschel} survey -- therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100,--,500$,mu$m, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of $<114,{rm M}odot,mbox{yr}^{-1}$. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with $mbox{SFR}>500,{rm M}odot,mbox{yr}^{-1}$ is consistent with the contribution of such luminous galaxies to the cosmic star formation density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا