ﻻ يوجد ملخص باللغة العربية
We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations ($T_{int}$), isotropic energies of prompt gamma-rays ($E_{gamma, iso}$) and redshifts ($z$) of their host galaxies are log-normally distributed for both the radio-loud and radio-quiet samples except those GRBs without any radio detections. Based on the distinct distributions of $T_{int}$, $E_{gamma, iso}$, the circum-burst medium density ($n$) and the isotropic equivalent energy of radio afterglows ($L_{ u,p}$), we confirm that the GRB radio afterglows are really better to be divided into the dim and the bright types. However, it is noticeable that the distributions of flux densities ($F_{host}$) from host galaxies of both classes of radio afterglows are intrinsically quite similar. Meanwhile, we point out that the radio-none sample is also obviously different from the above two samples with radio afterglows observed, according to the cumulative frequency distributions of the $T_{int}$ and the $E_{gamma, iso}$, together with correlations between $T_{int}$ and $z$. In addition, a positive correlation between $E_{gamma, iso}$ and $L_{ u,p}$ is found in the radio-loud samples especially for the supernova-associated GRBs. Besides, we also find this positive correlation in the radio-quiet sample. A negative correlation between $T_{int}$ and $z$ is confirmed to hold for the radio-quiet sample too. The dividing line between short and long GRBs in the rest frame is at $T_{int}simeq$1 s. Consequently, we propose that the radio-loud, the radio-quiet and the radio-none GRBs could be originated from different progenitors.
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the
We present a catalog of radio afterglow observations of gamma-ray bursts (GRBs) over a 14 year period from 1997 to 2011. Our sample of 304 afterglows consists of 2995 flux density measurements (including upper limits) at frequencies between 0.6 GHz a
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotro
We present a study of the intermediate regime between ultra-relativistic and nonrelativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refineme
Aims: Drawing an analogy with Active Galactic Nuclei, we investigate the one-zone SSC model of Gamma Ray Bursts afterglows in the presence of electron injection and cooling both by synchrotron and SSC losses. Methods: We solve the spatially averaged