ترغب بنشر مسار تعليمي؟ اضغط هنا

A Relativistic Fe K-alpha Emission Line in the Intermediate Luminosity BeppoSAX Spectrum of the Galactic Microquasar V4641 Sgr

69   0   0.0 ( 0 )
 نشر من قبل Jon M. Miller
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broad Fe K-alpha emission lines have recently been reported in a number of Galactic black holes. Such lines are useful accretion flow diagnostics because they may be produced at the inner accretion disk and shaped by relativistic effects, but in general they have only been observed at luminosities of L_X ~ 10^(37-38) erg/s in soft X-rays. The Galactic microquasar V4641 Sgr -- widely known for its 12.2 Crab (1.5-12 keV) outburst in 1999 September -- displayed low-level activity in 1999 March. BeppoSAX observed the source in this state and Fe K-alpha line emission was found (in t Zand et al. 2000). In re-analyzing these data, we find strong evidence that the Fe K-alpha line profile is broadened. For the most likely values of the source distance and black hole mass measured by Orosz et al. (2001), our fits to the total spectrum indicate that the source was observed at a luminosity of L_X = 1.9 (+1.0, -0.8) * 10^(36) erg/s (2-10 keV), or L_X/L_Edd. = 1.8 (+0.9, -0.8) * 10^(-3). Advection-dominated accretion flow (ADAF) models predict a radially-recessed disk in this regime. In contrast, fits to the observed Fe K-alpha emission line profile with a relativistic line model constrain the inner disk to be consistent with the marginally stable circular orbit of a Schwarzschild black hole.



قيم البحث

اقرأ أيضاً

In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned w ith the binary orbital axis. The inclination of the radio jets and the Fe$Kalpha$ line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Using a steady state analytical warped disc model for V4641 Sgr we find that the inner disc region is flat and aligned with the black hole up to about $900 R_{rm g}$. Thus if both the radio jet and fluorescent emission originates in the same inner region then the measurements of the inner disc inclination should be the same.
135 - W. R. Morningstar 2014
We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power-law. The first spectrum, however, is r emarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a Gamma = 2 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.
87 - J. M. Miller 2002
We observed the Galactic black hole Cygnus X-1 with the Chandra High Energy Transmission Grating Spectrometer for 30 kiloseconds on 4 January, 2001. The source was in an intermediate state, with a flux that was approximately twice that commonly obser ved in its persistent low/hard state. Our best-fit model for the X-ray spectrum includes narrow Gaussian emission line (E = 6.415 +/- 0.007 keV, FWHM = 80 (+28, -19) eV, W = 16 (+3, -2) eV) and broad line (E = 5.82 (+0.06, -0.07) keV, FWHM = 1.9 (+0.5, -0.3) keV, W = 140 (+70, -40) eV) components, and a smeared edge at 7.3 +/- 0.2 keV (tau ~ 1.0). The broad line profile is not as strongly skewed as those observed in some Seyfert galaxies. We interpret these features in terms of an accretion disk with irradiation of the inner disk producing a broad Fe K-alpha emission line and edge, and irradiation of the outer disk producing a narrow Fe K-alpha emission line. The broad line is likely shaped predominantly by Doppler shifts and gravitational effects, and to a lesser degree by Compton scattering due to reflection. We discuss the underlying continuum X-ray spectrum and these line features in the context of diagnosing the accretion flow geometry in Cygnus X-1 and other Galactic black holes.
126 - Zhu Liu , Weimin Yuan , Youjun Lu 2014
While a broad profile of the Fe K$alpha$ emission line is frequently found in the X-ray spectra of typical Seyfert galaxies, the situation is unclear in the case of Narrow Line Seyfert 1 galaxies (NLS1s)---an extreme subset which are generally though t to harbor less massive black holes with higher accretion rates. In this paper, the ensemble property of the Fe K$alpha$ line in NLS1s is investigated by stacking the X-ray spectra of a large sample of 51 NLS1s observed with {it XMM-Newton}. The composite X-ray spectrum reveals a prominent, broad emission feature over 4--7 keV, characteristic of the broad Fe K$alpha$ line. In addition, there is an indication for a possible superimposing narrow (unresolved) line, either emission or absorption, corresponding to Fe XXVI or Fe XXV, respectively. The profile of the broad emission feature can well be fitted with relativistic broad-line models, with the line energy consistent either with 6.4 keV (i.e., neutral Fe) or with 6.67 keV (i.e., highly ionized Fe), in the case of the narrow line being emission and absorption, respectively. Interestingly, there are tentative indications for low or intermediate values of the average spins of the black holes ($a<0.84$), as inferred from the profile of the composite broad line. If the observed feature is indeed a broad line rather than resulting from partial covering absorption, our results suggest that a relativistic Fe line may in fact be common in NLS1s; and there are tentative indications that black holes in NLS1s may not spin very fast in general.
Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped in two classes, named Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X-1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources. We analysed the first NuSTAR observation of this source to study its spectral emission exploiting the high statistics data collected by this satellite. Examining the colour-colour diagram, the source was probably observed during the lower normal and flaring branches of its Z-track. We separated the data from the two branches in order to investigate the evolution of the source along the track. We fitted the 3-60 keV NuSTAR spectra using the same models for both the branches. We adopted two description for the continuum: in the first case we used a blackbody and a thermal Comptonisation with seed photons originating in the accretion disc; in the second one, we adopted a disc-blackbody and a Comptonisation with a blackbody-shaped spectrum of the incoming seed photons. A power-law fitting the high energy emission above 20 keV was also required in both cases. The two models provide the same physical scenario for the source in both the branches: a blackbody temperature between 0.8 and 1.5 keV, a disc-blackbody with temperature between 0.4 and 0.6 keV, and an optically thick Comptonising corona with optical depth between 6 and 10 and temperature about 3 keV. Furthermore, two lines related to the K$alpha$ and K$beta$ transitions of the He-like Fe XXV ions were detected at 6.6 keV and 7.8 keV, respectively. A hard tail modelled by a power law with a photon index between 2 and 3 was also required for both the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا