ترغب بنشر مسار تعليمي؟ اضغط هنا

A Seyfert-2-like Spectrum in the High-Mass X-ray Binary Microquasar V4641 Sgr

145   0   0.0 ( 0 )
 نشر من قبل Jon M. Miller
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. R. Morningstar




اسأل ChatGPT حول البحث

We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power-law. The first spectrum, however, is remarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a Gamma = 2 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.



قيم البحث

اقرأ أيضاً

The soft gamma-ray repeater candidate SGR 0755$-$2933 was discovered in 2016 by Swift/BAT, which detected a short ($sim$30 ms) powerful burst typical of magnetars. To understand the nature of the source, we present here an analysis of follow-up obser vations of the tentative soft X-ray counterpart of the source obtained with Swift/XRT, NuSTAR and Chandra. From our analysis we conclude that, based on the observed counterpart position and properties, it is actually not a soft gamma ray repeater but rather a new high mass X-ray binary. We suggest to refer to it as 2SXPS J075542.5$-$293353. We conclude, therefore, that the available data do not allow us to confirm existence and identify the true soft X-ray counterpart to the burst event. Presence of a soft counterpart is, however, essential to unambiguously associate the burst with a magnetar flare, and thus we conclude that magnetar origin of the burst and precise burst location remain uncertain and require further investigation.
The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsatio ns. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} sim 4times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature lt 6.7$pm 0.2$ K and inferred emitting radius of $sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high $N_H$, thermal emission from the rest of the neutron star could be only weakly constrained, to lt $<$6.14$^{+0.05}_{-6.14}$ K, or $<3times10^{33}$ erg s${^{-1}}$.
In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned w ith the binary orbital axis. The inclination of the radio jets and the Fe$Kalpha$ line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Using a steady state analytical warped disc model for V4641 Sgr we find that the inner disc region is flat and aligned with the black hole up to about $900 R_{rm g}$. Thus if both the radio jet and fluorescent emission originates in the same inner region then the measurements of the inner disc inclination should be the same.
The X-ray spectrum of the Galactic X-ray binary V4641 Sgr in outburst has been found to exhibit a remarkably broad emission feature above 4 keV, with inferred equivalent widths up to 2 keV. Such a feature was first detected during the X-ray flaring a ctivity associated with the giant outburst that the source experienced in 1999 September. The extraordinarily large equivalent width line was then ascribed to reflection/reprocessing of fluorescent Fe emission within an extended optically thick outflow enshrouding the binary system as a result of a short-lived, super-Eddington accretion episode. Making use of new and archival X-ray observations, we show here that a similar feature persists over four orders of magnitude in luminosity, down to Eddington ratios as low as log(L_Edd) = -4.5, where the existence of an optically thick envelope appears at odds with any viable accretion flow model. Possible interpretations for this highly unusual X-ray spectrum include a blend of Doppler shifted/boosted Fe lines from unresolved X-ray jets (a la SS433), or, the first Galactic analog of a blazar spectrum, where the >4 keV emission would correspond to the onset of the Inverse Compton hump. Either requires a low inclination angle of the jet with respect to the line of sight, in agreement with the estimates for the 1999 superluminal jet (i_jet<10 deg). The fast variability of the feature, combined with the high orbital axis inclination (60 deg< i_orb<71 deg), argue for a rapidly precessing accretion flow around V4641 Sgr, possibly leading to a transient microblazar behavior.
In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center ( GC) X-ray Visionary Program obtained approximately 3 Ms (one month) of Chandra HETG data, offering the only opportunity to examine the quiescent X-ray emission of Sgr A* with high resolution spectroscopy. Utilizing custom background regions and filters for removing overlapping point sources, this work provides the first ever look at stacked HETG spectra of Sgr A*. We model the background datasets with a cubic spline and fit the unbinned Sgr A* spectra with a simple parametric model of a power law plus Gaussian lines under the effects of interstellar extinction. We detect a strong 6.7 keV iron emission line in the HEG spectra and a 3.1 keV emission line in the MEG spectra. In all cases, the line centroids and equivalent widths are consistent with those measured from low-resolution CCD spectra. An examination of the unbinned, stacked HEG+/-1 spectrum reveals fine structure in the iron line complex. In addition to resolving the resonant and forbidden lines from He-like iron, there are apparent emission features arising with higher statistical significance at lower energy, potentially associated with FeXX-XXIV ions in a ~1 keV plasma arising near the Bondi radius of Sgr A*. With this work, we release the cleaned and stacked Sgr A* and background HETG spectra to the public as a special legacy dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا