ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicolor flickering studies of X1822-371

173   0   0.0 ( 0 )
 نشر من قبل Raymundo Baptista
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the analysis of high-speed multicolor photometry of the eclipsing X-ray binary X1822-371. We used new eclipse timings to derive a revised optical ephemeris. A quadratic fit to the eclipse timings is not statistically significant but suggests that the orbital period is increasing on a timescale of P/|Pdot|= (4.2 +/- 1.4) 10^6 yr. We find no systematic delay or advance of the optical timings with respect to the X-ray timings. Average UBVRI light curves show the deep eclipse of the disc by the secondary star superimposed on the broader and shallower occultation of the inner disc regions by the outer disc (dip), and an orbital hump centred at phase +0.25 which is mostly seen in the U and B bands. The starting phase of the dip occurs earlier for shorter wavelengths, while the egress occurs at the same phase in all bands. This suggests that the thickening of the outer, occulting disc rim is gradual with azimuth at ingress but decreases sharply at egress. We fit synthetic photometry to the extracted colors of the inner and outer disc regions to estimate their effective temperatures. We find Teff= (9+/-5) 10^7 K and Teff= (6+/-2) 10^4 K, respectively, for the inner and outer disc regions. The orbital dependency of the flickering activity is derived from the mean scatter of the individual light curves with respect to the average UBVRI light curves. The flickering curves show a broad eclipse at the dipping phases, the depth of which decreases with increasing wavelength. The blue, eclipsed flickering component is associated with the inner disc regions and can be fitted by a blackbody spectrum of Teff= (2.1+/-0.8) 10^8 K, whereas the uneclipsed flickering component probably arises from the outermost disc regions and is well described by a blackbody of Teff= (9.6+/-0.7) 10^3 K.



قيم البحث

اقرأ أيضاً

61 - A.N. Parmar 2000
Results of a 1997 September 9-10 BeppoSAX observation of the 5.57 hr low-mass X-ray binary (LMXRB) X1822-371 are presented. The 0.3-40 keV spectrum is unusually complex and cannot be fit by any of the standard models applied to other LMXRB. At least two components are required. One component has a shape consistent with that expected from the Comptonization of an input soft (Wein) spectrum while the other, contributing ~40% of the 1-10 keV flux, is consistent with being a blackbody. In addition, there is a ``dip in the spectrum which can be modeled by a 1.33 +0.05 -0.11 keV absorption edge with an optical depth, tau, of 0.28 +/- 0.06. If the same model is fit to ASCA Solid-State Imaging Spectrometer spectra obtained in 1993 and 1996, then reasonable fits are also obtained, with a similar absorption feature required. The nature of this feature is highly uncertain; its energy corresponds to the K-edges of highly ionized Ne x and neutral Mg, or to an L-edge of moderately ionized Fe. Surprisingly, no strong (tau > 0.05) Fe-K or (tau > 0.18) O-K edges are visible. The folded lightcurve of X1822-371 is similar to previous observations, except that no strong softening is seen near the eclipse. An updated orbital ephemeris is provided.
96 - R. M. Sambruna 2007
This paper presents multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS 2201+044, acquired with Chandra, HST, VLA, and Merlin. Radio polarization images are also available. The two sources stand out as intermediate between FRIs and FRIIs; their cores are classified as BL Lacs, although broad and narrow optical emission lines were detected at times. The multiwavelength images show jet morphologies with the X-ray emission peaking closer to the nucleus than the longer wavelengths. The jets are resolved at all wavelengths in a direction perpendicular to the jet axis. The jets SEDs are consistent with a single spectral component from radio to X-rays, interpreted as synchrotron emission. The SEDs show a progressive softening from the inner to the outer regions of the jet, indicating that the electron break energy moves to lower energies with distance from the core. Overall, the X-ray and multiwavelength properties of the jets of 3C 371 and PKS 2201+044 appear intermediate between those of FRIs and FRIIs.
Given a positive integer $ r $, the $ r $-color size-Ramsey number of a graph $ H $, denoted by $ hat{R}(H, r) $, is the smallest integer $ m $ for which there exists a graph $ G $ with $ m $ edges such that, in any edge coloring of $ G $ with $ r $ colors, $G$ contains a monochromatic copy of $ H $. Haxell, Kohayakawa and L uczak showed that the size-Ramsey number of a cycle $ C_n $ is linear in $ n $ i.e. $ hat{R}(C_n, r) leq c_rn $, for some constant $ c_r $. Their proof, however, is based on the Szemeredis regularity lemma and so no specific constant $ c_r $ is known. Javadi, Khoeini, Omidi and Pokrovskiy gave an alternative proof for this result which avoids using of the regularity lemma. Indeed, they proved that if $ n $ is even, then $ c_r $ is exponential in $ r $ and if $ n $ is odd, then $ c_r $ is doubly exponential in $ r $. oindent In this paper, we improve the bound $c_r$ and prove that $c_r$ is polynomial in $r$ when $n$ is even and is exponential in $r$ when $n$ is odd. We also prove that in the latter case, it cannot be improved to a polynomial bound in $r$. More precisely, we prove that there are some positive constants $c_1,c_2$ such that for every even integer $n$, we have $c_1r^2nleq hat{R}(C_n,r)leq c_2r^{120}(log^2 r)n$ and for every odd integer $n$, we have $c_1 2^{r}n leq hat{R}(C_n, r)leq c_22^{16 r^2+2log r}n $.
107 - R. Zamanov , S. Boeva , B. Spassov 2019
We report photometric observations in Johnson UBV bands of the short term variability of Mira. The amplitude detected is 0.16 mag in B band. Adopting interstellar extinction E(B-V)=0, we find for the flickering source colour B-V=1.3, temperature T=37 00 K, and radius R=0.77 Rsun. The colour of the flickering source is considerably redder than the average B-V colour of the cataclysmic variables.
We present new observations of Fornax A taken at 1 GHz with the MeerKAT telescope and at 6 GHz with the Sardinia Radio Telescope (SRT). The sensitive (noise ~16 micro-Jy beam$^{-1}$), high resolution ( < 10) MeerKAT images show that the lobes of Forn ax A have a double-shell morphology, where dense filaments are embedded in a diffuse and extended cocoon. We study the spectral properties of these components by combining the MeerKAT and SRT observations with archival data between 84 MHz and 217 GHz. For the first time, we show that multiple episodes of nuclear activity must have formed the extended radio lobes. The modelling of the radio spectrum suggests that the last episode of injection of relativistic particles into the lobes started ~ 24 Myr ago and stopped approximately 12 Myr ago. More recently (~ 3 Myr ago), a less powerful and short ( < 1 Myr) phase of nuclear activity generated the central jets. Currently, the core may be in a new active phase. It appears that Fornax A is rapidly flickering. The dense environment in which Fornax A lives has lead to a complex recent merger history for this galaxy, including mergers spanning a range of gas contents and mass ratios, as shown by the analysis of the galaxys stellar- and cold-gas phases. This complex recent history may be the cause of the rapid, recurrent nuclear activity of Fornax A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا