ترغب بنشر مسار تعليمي؟ اضغط هنا

A fireworks model for Gamma-Ray Bursts

78   0   0.0 ( 0 )
 نشر من قبل Francesco Longo
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energetics of the long duration GRB phenomenon is compared with models of a rotating Black Hole (BH) in a strong magnetic field generated by an accreting torus. A rough estimate of the energy extracted from a rotating BH with the Blandford-Znajek mechanism is obtained with a very simple assumption: an inelastic collision between the rotating BH and the torus. The GRB energy emission is attributed to an high magnetic field that breaks down the vacuum around the BH and gives origin to a e+- fireball. Its subsequent evolution is hypothesized, in analogy with the in-flight decay of an elementary particle, to evolve in two distinct phases. The first one occurs close to the engine and is responsible of energizing and collimating the shells. The second one consists of a radiation dominated expansion, which correspondingly accelerates the relativistic photon--particle fluid and ends at the transparency time. This mechanism simply predicts that the observed Lorentz factor is determined by the product of the Lorentz factor of the shell close to the engine and the Lorentz factor derived by the expansion. An anisotropy in the fireball propagation is thus naturally produced, whose degree depends on the bulk Lorentz factor at the end of the collimation phase.



قيم البحث

اقرأ أيضاً

62 - D. Begue , A. Peer , Y. Lyubarski 2016
In this paper we revisit the striped wind model in which the wind is accelerated by magnetic reconnection. In our treatment, radiation is included as an independent component, and two scenarios are considered. In the first one, radiation cannot strea m efficiently through the reconnection layer, while the second scenario assumes that radiation is homogeneous in the striped wind. We show how these two assumptions affect the dynamics. In particular, we find that the asymptotic radial evolution of the Lorentz factor is not strongly modified whether radiation can stream through the reconnection layer or not. On the other hand, we show that the width, density and temperature of the reconnection layer are strongly dependent on these assumptions. We then apply the model to the gamma-ray burst context and find that photons cannot diffuse efficiently through the reconnection layer below radius $r_{rm D}^{Delta} sim 10^{10.5}$ cm, which is about an order of magnitude below the photospheric radius. Above $r_{rm D}^{Delta}$, the dynamics asymptotes to the solution of the scenario in which radiation can stream through the reconnection layer. As a result, the density of the current sheet increases sharply, providing efficient photon production by the Bremsstrahlung process which could have profound influence on the emerging spectrum. This effect might provide a solution to the soft photon problem in GRBs.
82 - F. Genet 2006
We compute the afterglow of gamma-ray bursts produced by purely electromagnetic outflows to see if it shows characteristic signatures differing from those obtained with the standard internal/external shock model. Using a simple approach for the injec tion of electromagnetic energy to the forward shock we obtain the afterglow evolution both during the period of activity of the central source and after. Our method equally applies to a variable source. Afterglow light curves in the visible and X-ray bands are computed both for a uniform medium and a stellar wind environment. They are brighter at early times than afterglows obtained with the internal/external shock model but relying only on these differences to discriminate between models is not sufficient.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv e highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
249 - Houjun Lv 2010
Recent Swift observations suggest that the traditional long vs. short GRB classification scheme does not always associate GRBs to the two physically motivated model types, i.e. Type II (massive star origin) vs. Type I (compact star origin). We propos e a new phenomenological classification method of GRBs by introducing a new parameter epsilon=E_{gamma, iso,52}/E^{5/3}_{p,z,2}, where E_{gamma,iso} is the isotropic gamma-ray energy (in units of 10^{52} erg), and E_{p,z} is the cosmic rest frame spectral peak energy (in units of 100 keV). For those short GRBs with extended emission, both quantities are defined for the short/hard spike only. With the current complete sample of GRBs with redshift and E_p measurements, the epsilon parameter shows a clear bimodal distribution with a separation at epsilon ~ 0.03. The high-epsilon region encloses the typical long GRBs with high-luminosity, some high-z rest-frame-short GRBs (such as GRB 090423 and GRB 080913), as well as some high-z short GRBs (such as GRB 090426). All these GRBs have been claimed to be of the Type II origin based on other observational properties in the literature. All the GRBs that are argued to be of the Type I origin are found to be clustered in the low-epsilon region. They can be separated from some nearby low-luminosity long GRBs (in 3sigma) by an additional T_{90} criterion, i.e. T_{90,z}<~ 5 s in the Swift/BAT band. We suggest that this new classification scheme can better match the physically-motivated Type II/I classification scheme.
It is known that the soft tail of the gamma-ray bursts spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effe ct allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is $Delta z approx 0.33$. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as gamma photometric redshift estimation. The estimated redshifts for the long bright gamma-ray bursts are up to $z simeq 4$. For the the faint long bursts - which should be up to $z simeq 20$ - the redshifts cannot be determined unambiguously with this method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا