ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma photometric redshifts for long gamma-ray bursts

69   0   0.0 ( 0 )
 نشر من قبل Zsolt Bagoly
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that the soft tail of the gamma-ray bursts spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effect allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is $Delta z approx 0.33$. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as gamma photometric redshift estimation. The estimated redshifts for the long bright gamma-ray bursts are up to $z simeq 4$. For the the faint long bursts - which should be up to $z simeq 20$ - the redshifts cannot be determined unambiguously with this method.


قيم البحث

اقرأ أيضاً

Until 6 October 2005 sixteen redshifts have been measured of long gamma-ray bursts discovered by the Swift satellite. Further 45 redshifts have been measured of the long gamma-ray bursts discovered by other satellites. Here we perform five statistica l tests comparing the redshift distributions of these two samples assuming - as the null hypothesis - identical distribution for the two samples. Three tests (Students $t$-test, Mann-Whitney test, Kolmogorov-Smirnov test) reject the null hypothesis on the significance levels between 97.19 and 98.55%. Two different comparisons of the medians show extreme $(99.78-99.99994)$% significance levels of rejection. This means that the redshifts of the Swift sample and the redshifts of the non-Swift sample are distributed differently - in the Swift sample the redshifts are on average larger. This statistical result suggests that the long GRBs should on average be at the higher redshifts of the Swift sample.
GRBs are now detected up to z = 8.26 . We try to find differences, in their restframe properties, which could be related either to distance or to observing conditions.
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of source s, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have man y narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters -- width and asymmetry -- and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and ~ 100 times wider (10s of seconds), have systematically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least five parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nF(n) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
64 - D. Lazzati 2006
As soon as it was realized that long GRBs lie at cosmological distances, attempts have been made to use them as cosmological probes. Besides their use as lighthouses, a task that presents mainly the technological challenge of a rapid deep high resolu tion follow-up, researchers attempted to find the Holy Grail: a way to create a standard candle from GRB observables. We discuss here the attempts and the discovery of the Ghirlanda correlation, to date the best method to standardize the GRB candle. Together with discussing the promises of this method, we will underline the open issues, the required calibrations and how to understand them and keep them under control. Even though GRB cosmology is a field in its infancy, ongoing work and studies will clarify soon if and how GRBs will be able to keep up to the promises.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا