ترغب بنشر مسار تعليمي؟ اضغط هنا

The HST survey of the B2 sample of radio-galaxies: optical nuclei and the FRI/BL Lac unified scheme

55   0   0.0 ( 0 )
 نشر من قبل Alessandro Capetti
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Capetti




اسأل ChatGPT حول البحث

We examine the optical properties of the nuclei of low luminosity radio-galaxies using snapshot HST images of the B2 sample. In agreement with the results obtained from the analysis of the brighter 3C/FRI sample, we find a correlation between fluxes (and luminosities) of the optical and radio cores. This provides further support for the interpretation that the optical nuclear emission in FRI is dominated by synchrotron emission and that accretion in these sources takes place in a low efficiency radiative regime. In the framework of the FRI/BL Lacs unified scheme, we find that the luminosity difference between FRI and BL Lac nuclei can be reproduced with a common beaming factor in both the radio and the optical band, independent of the extended radio luminosity, thus supporting such a scenario. The corresponding bulk Lorentz factor is significantly smaller than is expected from observational and theoretical considerations in BL Lacs: this can be interpreted as due to a velocity structure in the jet, with a fast spine surrounded by a slower layer.

قيم البحث

اقرأ أيضاً

67 - A. Capetti 2000
We consider archival ROSAT and HST observations of five FRI radio galaxies and isolate their nuclear emission from that of the host galaxy. This enable us to determine the Spectral Energy Distributions (SED) of their nuclei spanning from the radio to the X-ray band. They cannot be described as single power-laws but require the presence of an emission peak located between the IR and soft X-ray band. We found consistency between the SED peak position and the values of the broad band spectral indices of radio galaxies with those of BL Lac, once the effects of beaming are properly taken into account. FRI SED are thus qualitatively similar to those of BL Lacs supporting the identification of FRI sources as their mis-oriented counterparts. No dependence of the shape of the SED on the FR~I orientation is found.
We present results from Chandra observations of the 3C/FRI sample of low luminosity radio-galaxies. We detected a power-law nuclear component in 12 objects out of the 18 with available data. In 4 galaxies we detected nuclear X-ray absorption at a lev el of about N_H= (0.2-6)e22 cm-2. X-ray absorbed sources are associated with the presence of highly inclined dusty disks (or dust filaments projected onto the nuclei) seen in the HST images. This suggests the existence of a flattened X-ray absorber, but of much lower optical depth than in classical obscuring tori. We thus have an un-obstructed view toward most FR~I nuclei while absorption plays only a marginal role in the remaining objects. Three pieces of evidence support an interpretation for a jet origin for the X-ray cores: i) the presence of strong correlations between the nuclear luminosities in the radio, optical and X-ray bands, extending over 4 orders of magnitude and with a much smaller dispersion (about 0.3 dex) when compared to similar trends found for other classes of AGNs, pointing to a common origin for the emission in the three bands; ii) the close similarity of the broad-band spectral indices with the sub-class of BL Lac objects sharing the same range of extended radio-luminosity, in accord with the FRI/BL Lacs unified model; iii) the presence of a common luminosity evolution of spectral indices in both FRI and BL Lacs. The low luminosities of the X-ray nuclei, regardless of their origin, strengthens the interpretation of low efficiency accretion in low luminosity radio-galaxies.
We present a new method to fit the variations of both coordinates of a VLBI component as a function of time, assuming that the nucleus of the radio source contains a binary black hole system (BBH system). The presence of a BBH system produces 2 pertu rbations of the trajectory of the ejected VLBI components. By using only the VLBI coordinates, the problem we have to solve reduces to an astrometric problem. Knowledge of the variations of the VLBI coordinates as a function of time contains the kinematical information, thus we are able to deduce the inclination angle of the source and the bulk Lorentz factor of the ejected component. Generally, there is a family of the BBH system producing the same fit to our data. To illustrate this method, we apply it to the source 1807+784. We find that the inclination of the source is i = 5.8+-1.8 degrees and the VLBI component is ejected with a bulk Lorentz factor of 3.7+-0.3. We determine the family of the BBH system which provides the best fit, assuming at first that the masses of the 2 black holes are equal and then that the masses are different. Each family of BBH systems is characterized by Tp/Tb~1.967, where Tp and Tb are the precession period of the accretion disk of the black hole ejecting the VLBI component and the orbiting period of the BBH system.
We report on our further analysis of the expanded and revised sample of potential BL Lac objects (the 2BL) optically identified from two catalogues of blue-selected (UV excess) point sources, the 2dF and 6dF QSO Redshift Surveys (2QZ and 6QZ). The 2B L comprises 52 objects with no apparent proper motion, over the magnitude range 16.0 < bj< 20.0. Follow-up high signal-to-noise spectra of 36 2BL objects and NIR imaging of 18 objects, together with data for 19 2BL objects found in the Sloan Digital Sky survey (SDSS), show 17 objects to be stellar, while a further 16 objects have evidence of weak, broad emission features, although for at least one of these the continuum level has clearly varied. Classification of three objects remains uncertain,with NIR results indicating a marked reduction in flux as compared to SDSS optical magnitudes. Seven objects have neither high signal-to-noise spectra nor NIR imaging. Deep radio observations of 26 2BL objects at the VLA resulted in only three further radio-detections, however none of the three is classed as a featureless continuum object. Seven 2BL objects with a radio detection are confirmed as candidate BL Lac objects while one extragalactic (z=0.494) continuum object is undetected at radio frequencies. One further radio-undetected object is also a potential BL Lac candidate. However it would appear that there is no significant population of radio-quiet BL Lac objects.
We compare the variability properties of very high energy gamma-ray emitting BL Lac objects in the optical and radio bands. We use the variability information to distinguish multiple emission components in the jet, to be used as a guidance for spectr al energy distribution modelling. Our sample includes 32 objects in the Northern sky that have data for at least 2 years in both bands. We use optical R-band data from the Tuorla blazar monitoring program and 15 GHz radio data from the Owens Valley Radio Observatory blazer monitoring program. We estimate the variability amplitudes using the intrinsic modulation index, and study the time-domain connection by cross-correlating the optical and radio light curves assuming power law power spectral density. Our sample objects are in general more variable in the optical than radio. We find correlated flares in about half of the objects, and correlated long-term trends in more than 40% of the objects. In these objects we estimate that at least 10%-50% of the optical emission originates in the same emission region as the radio, while the other half is due to faster variations not seen in the radio. This implies that simple single-zone spectral energy distribution models are not adequate for many of these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا