ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling nuclei of radio galaxies from VLBI radio observations. Application to the BL Lac Object S5 1803+784

127   0   0.0 ( 0 )
 نشر من قبل Nadia Kudryavtseva
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method to fit the variations of both coordinates of a VLBI component as a function of time, assuming that the nucleus of the radio source contains a binary black hole system (BBH system). The presence of a BBH system produces 2 perturbations of the trajectory of the ejected VLBI components. By using only the VLBI coordinates, the problem we have to solve reduces to an astrometric problem. Knowledge of the variations of the VLBI coordinates as a function of time contains the kinematical information, thus we are able to deduce the inclination angle of the source and the bulk Lorentz factor of the ejected component. Generally, there is a family of the BBH system producing the same fit to our data. To illustrate this method, we apply it to the source 1807+784. We find that the inclination of the source is i = 5.8+-1.8 degrees and the VLBI component is ejected with a bulk Lorentz factor of 3.7+-0.3. We determine the family of the BBH system which provides the best fit, assuming at first that the masses of the 2 black holes are equal and then that the masses are different. Each family of BBH systems is characterized by Tp/Tb~1.967, where Tp and Tb are the precession period of the accretion disk of the black hole ejecting the VLBI component and the orbiting period of the BBH system.



قيم البحث

اقرأ أيضاً

We present the results of a multi-frequency analysis of the structural variability in the parsec-scale jet of the blazar S5 1803+784. More than 90 epochs of observations at 6 frequencies from 1.6 GHz up to 22 GHz have been combined and analyzed. We d iscuss an alternative jet model for the source. In contrast to previously discussed motion scenarios for S5 1803+784, we find that the jet structure within 12 mas of the core can most easily be described by seven oscillating jet features. We find that the parameters of jet features, such as core separation, position angle and flux density, change in a periodic way with a timescale of about 4 years. We also find evidence for a correlation between these parameters and the total flux density variability. We suggest a scenario incorporating a periodic form of motion (e.g. rotation, precession), with a non-negligible geometrical contribution to explain the observational results.
The radio, optical, and $gamma$-ray light curves of the blazar S5 1803+784, from the beginning of the {it Fermi} Large Area Telescope (LAT) mission in August 2008 until December 2018, are presented. The aim of this work is to look for correlations am ong different wavelengths useful for further theoretical studies. We analyzed all the data collected by {it Fermi} LAT for this source, taking into account the presence of nearby sources, and we collected optical data from our own observations and public archive data to build the most complete optical and $gamma$-ray light curve possible. Several $gamma$-ray flares ($mathrm{F>2.3~10^{-7} ph(E>0.1 GeV)~cm^{-2}~s^{-1}}$) with optical coverage were detected, all but one with corresponding optical enhancement; we also found two optical flares without a $gamma$-ray counterpart. We obtained two {it Swift} Target of Opportunity observations during the strong flare of 2015. Radio observations performed with VLBA and EVN through our proposals in the years 2016-2020 were analyzed to search for morphological changes after the major flares. The optical/$gamma$-ray flux ratio at the flare peak varied for each flare. Very minor optical V-I color changes were detected during the flares. The X-ray spectrum was well fitted by a power law with photon spectral index $alpha$=1.5, nearly independent of the flux level: no clear correlation with the optical or the $gamma$-ray emission was found. The $gamma$-ray spectral shape was well fitted by a power law with average photon index $alpha$= 2.2. These findings support an Inverse Compton origin for the high-energy emission of the source, nearly co-spatial with the optically emitting region. The radio maps showed two new components originating from the core and moving outwards, with ejection epochs compatible with the dates of the two largest $gamma$-ray flares.
53 - U. Bach 2005
To determine the location of the intra-day variable (IDV) emission region within the jet of the BL Lac object S5 0716+714, a multi-epoch VSOP polarization experiment was performed in Autumn 2000. To detect, image, and monitor the short term variabili ty of the source, three space-VLBI experiments were performed with VSOP at 5 GHz, separated in time by six days and by one day. Quasi-contemporaneous flux density measurements with the Effelsberg 100 m radio telescope during the VSOP observations revealed variability of about 5% in total intensity and up to 40% in linear polarization in less than one day. Analysis of the VLBI data shows that the variations are located inside the VLBI core component of 0716+714. In good agreement with the single-dish measurements, the VLBI ground array images and the VSOP images, both show a decrease in the total flux density of ~20 mJy and a drop of ~5 mJy in the linear polarization of the VLBI core. During the observing interval, the polarization angle rotated by about 15 degrees. No variability was found in the jet. The high angular-resolution VSOP images are not able to resolve the variable component and set an upper limit of <0.1 mas to the size of the core component. From the variability timescales we estimate a source size of a few micro-arcseconds and brightness temperatures exceeding 10^15 K. We discuss the results in the framework of source-extrinsic (interstellar scintillation induced) and source-intrinsic IDV models.
Using the 1.56m telescope at the Shanghai Observatory (ShAO), China, we monitored two sources, BL Lac object S5 0716+714 and Flat Spectrum Radio Quasar (FSRQ) 3C 273. For S5 0716+714, we report 4969 sets of CCD (Charge-coupled Device) photometrical o ptical observations (1369 for V band, 1861 for R band and 1739 for I band) in the monitoring time from Dec.4, 2000 to Apr.5, 2014. For 3C 273, we report 460 observations (138 for V band, 146 for R band and 176 for I band) in the monitoring time from Mar. 28, 2006 to Apr. 9, 2014. The observations provide us with a large amount of data to analyze the short-term and long-term optical variabilities. Based on the variable timescales, we can estimate the central black hole mass and the Doppler factor. An abundance of multi-band observations can help us to analyze the relations between the brightness and spectrum. We use Gaussian fitting to analyze the intra-day light curves and obtain the intra-day variability (IDV) timescales. We use the discrete correlation function (DCF) method and Jurkevich method to analyze the quasi-periodic variability. Based on the VRI observations, we use the linear fitting to analyze the relations between brightness and spectrum. The two sources both show IDV properties for S5 0716+714. The timescales are in the range from 17.3 minutes to 4.82 hours; for 3C273, the timescale is 35.6 minutes. Based on the periodic analysis methods, we find the periods P(V) = 24.24 days, P(R)=24.12 days, P(I)=24.82 days for S5 0716+714, and P = 12.99, 21.76 yr for 3C273. The two sources displayed the bluer-when-brighter spectral evolution properties. S5 0716+714 and 3C 273 are frequently studied objects. The violent optical variability and IDV may come from the jet. Gaussian fitting can be used to analyze IDVs. The relations between brightness (flux density) and spectrum are strongly influenced by the frequency.
42 - D. Londish 2004
High signal-to-noise spectroscopy has established a redshift of z=0.494 for the source 2QZJ215454.3-305654, originally selected from the 2dF/6dF QSO Redshift Surveys as one of 45 candidate BL Lac objects displaying a featureless continuum at optical wavelengths. Radio observations using the Australia Telescope Compact Array at 1.4 GHz place a 3sigma upper limit on the objects radio flux density of approx 0.14mJy. The radio-to-optical flux ratio of this object is thus more than 7 times lower than the lowest such ratio observed in BL Lac objects. While the optical properties of 2QZJ215454.3-305654 are consistent with a BL Lac identification, the lack of radio and/or X-ray emission is not. It is uncertain whether this object is an AGN dominated by optical continuum emission from an accretion disk, or is similar to a BL Lac object with optical nonthermal emission from a relativistic jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا