ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the Cosmic-Ray Antiproton to Proton Abundance Ratio between 4 and 50 GeV

184   0   0.0 ( 0 )
 نشر من قبل Michael Schubnell
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new measurement of the antiproton to proton abundance ratio, pbar/p, in the cosmic radiation. The HEAT-pbar instrument, a balloon borne magnet spectrometer with precise rigidity and multiple energy loss measurement capability, was flown successfully in Spring 2000, at an average atmospheric depth of 7.2 g/cm^2. A total of 71 antiprotons were identified above the vertical geomagnetic cut-off rigidity of 4.2 GV. The highest measured proton energy was 81 GeV. We find that the pbar/p abundance ratio agrees with that expected from a purely secondary origin of antiprotons produced by primary protons with a standard soft energy spectrum.



قيم البحث

اقرأ أيضاً

A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a ten-fold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g. dark matter particle annihilations.
We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98 which was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.
Cosmic-ray proton and antiproton spectra were measured at mountain altitude, 2770 m above sea level. We observed more than 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy range between 0.25 and 3.3 GeV. The zenith-angle dependence of proton flux was obtained. The observed spectra were compared with theoretical predictions.
231 - T. Sanuki , M. Fujikawa , K. Abe 2003
Measurement of cosmic-ray proton, antiproton and muon spectra was carried out at mountain altitude. We observed 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy region of 0.25 -- 3.3 GeV. Zenith-angle dependence of proton fluxes was obtained . Atmospheric muon spectra were measured simultaneously. The observed antiproton spectrum showed some deviation from theoretical predictions particularly in a low energy region.
182 - S. Orito 1999
The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.18 to 3.56 GeV, based on 458 antiprotons collected by BESS in recent solar-minimum period. We have detected for the first time a distinctive peak at 2 GeV of antiprotons o riginating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS flights toward the solar maximum will help us to study the solar modulation and the propagation in detail and to search for primary antiproton components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا