ﻻ يوجد ملخص باللغة العربية
The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.18 to 3.56 GeV, based on 458 antiprotons collected by BESS in recent solar-minimum period. We have detected for the first time a distinctive peak at 2 GeV of antiprotons originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS flights toward the solar maximum will help us to study the solar modulation and the propagation in detail and to search for primary antiproton components.
The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV
Cosmic-ray proton and antiproton spectra were measured at mountain altitude, 2770 m above sea level. We observed more than 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy range between 0.25 and 3.3 GeV. The zenith-angle dependence of proton
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good
Measurement of cosmic-ray proton, antiproton and muon spectra was carried out at mountain altitude. We observed 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy region of 0.25 -- 3.3 GeV. Zenith-angle dependence of proton fluxes was obtained
The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz,