ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Stochastic Biasing of Galaxies and Dark Halos in Cosmological Hydrodynamic Simulations

64   0   0.0 ( 0 )
 نشر من قبل Kohji Yoshikawa
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an extensive analysis of nonlinear and stochastic biasing of galaxies and dark halos in spatially flat low-density CDM universe using cosmological hydrodynamic simulations. We compare their biasing properties with the predictions of an analytic halo biasing model. Dark halos in our simulations exhibit reasonable agreement with the predictions only on scales larger than 10h^{-1}Mpc, and on smaller scales the volume exclusion effect of halos due to their finite size becomes substantial. Interestingly the biasing properties of galaxies are better described by extrapolating the halo biasing model predictions. We also find the clear dependence of galaxy biasing on their formation epoch; the distribution of old populations of galaxies tightly correlates with the underlying mass density field, while that of young populations is slightly more stochastic and anti-biased relative to dark matter. The amplitude of two-point correlation function of old populations is about 3 times larger than that of the young populations. Furthermore, the old population of galaxies reside within massive dark halos while the young galaxies are preferentially formed in smaller dark halos. Assuming that the observed early and late-type galaxies correspond to the simulated old and young populations of galaxies, respectively, all of these segregations of galaxies are consistent with observational ones for the early and late-type of galaxies such as the morphology--density relation of galaxies.

قيم البحث

اقرأ أيضاً

We propose a general formalism for galaxy biasing and apply it to methods for measuring cosmological parameters, such as regression of light versus mass, the analysis of redshift distortions, measures involving skewness and the cosmic virial theorem. The common linear and deterministic relation g=b*d between the density fluctuation fields of galaxies g and mass d is replaced by the conditional distribution P(g|d) of these random fields, smoothed at a given scale at a given time. The nonlinearity is characterized by the conditional mean <g|d>=b(d)*d, while the local scatter is represented by the conditional variance s_b^2(d) and higher moments. The scatter arises from hidden factors affecting galaxy formation and from shot noise unless it has been properly removed. For applications involving second-order local moments, the biasing is defined by three natural parameters: the slope b_h of the regression of g on d, a nonlinearity b_t, and a scatter s_b. The ratio of variances b_v^2 and the correlation coefficient r mix these parameters. The nonlinearity and the scatter lead to underestimates of order b_t^2/b_h^2 and s_b^2/b_h^2 in the different estimators of beta (=Omega^0.6/b_h). The nonlinear effects are typically smaller. Local stochasticity affects the redshift-distortion analysis only by limiting the useful range of scales, especially for power spectra. In this range, for linear stochastic biasing, the analysis reduces to Kaisers formula for b_h (not b_v), independent of the scatter. The distortion analysis is affected by nonlinear properties of biasing but in a weak way. Estimates of the nontrivial features of the biasing scheme are made based on simulations and toy models, and strategies for measuring them are discussed. They may partly explain the range of estimates for beta.
101 - Jared Gabor 2012
I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is . 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.
183 - Kentaro Nagamine 2009
We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandab le if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems that match the observed number density of SMGs. In our models, SMGs are massive galaxies sitting at the centres of large potential wells, being fed by smooth infall and gas-rich satellites at rates comparable to their star formation rates (SFR). They are not typically undergoing major mergers that significantly boost their quiescent SFR, but they still often show complex gas morphologies and kinematics. Our simulated SMGs have stellar masses of log M*/Mo~11-11.7, SFRs of ~180-500 Mo/yr, a clustering length of 10 Mpc/h, and solar metallicities. The SFRs are lower than those inferred from far-IR data by a factor of 3, which we suggest may owe to one or more systematic effects in the SFR calibrations. SMGs at z=2 live in ~10^13 Mo halos, and by z=0 they mostly end up as brightest group galaxies in ~10^14 Mo halos. We predict that higher-M* SMGs should have on average lower specific SFRs, less disturbed morphologies, and higher clustering. We also predict that deeper far-IR surveys will smoothly join SMGs onto the massive end of the SFR-M* relationship defined by lower-mass z=2 galaxies. Overall, our simulated rapid star-formers provide as good a match to available SMG data as merger-based scenarios, offering an alternative scenario that emerges naturally from cosmological simulations.
We examine the global HI properties of galaxies in quarter-billion particle cosmological simulations using Gadget-2, focusing on how galactic outflows impact HI content. We consider four outflow models, including a new one (ezw) motivated by recent i nterstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentum-driven outflows for larger galaxies and energy-driven outflows for dwarfs (sigma<75 km/s). To obtain predicted HI masses, we employ a simple but effective local correction for particle self-shielding, and an observationally-constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an HI mass function whose faint-end slope of -1.3 agrees well with observations from the ALFALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in HI fraction versus halo mass, with smaller satellites and/or those in larger halos more often being HI-deficient. At a given stellar mass, HI content correlates with star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive HI galaxies disappear and the mass function steepens. The global cosmic HI density conspires to remain fairly constant from z~5-0, but the relative contribution from smaller galaxies increases with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا