ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra and Growth Rates of Fluctuating Magnetic Fields in the Kinematic Dynamo Theory with Large Magnetic Prandtl Numbers

40   0   0.0 ( 0 )
 نشر من قبل Alex Schekochihin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of a weak galactic magnetic field has been repeatedly confirmed by observational data. The origin of this field has not as yet been explained in a fully satisfactory way and represents one of the main challenges of the astrophysical dynamo theory. In both the galactic dynamo theory and the primordial-origin theory, a major influence is exerted by the small-scale magnetic fluctuations. This article is devoted to constructing a systematic second-order statistical theory of such small-scale fields. The statistics of these fields are studied in the kinematic approximation and for the case of large Prandtl numbers, which is relevant for the galactic and protogalactic plasma. The advecting velocity field is assumed to be Gaussian and short-time correlated. Theoretical understanding of this kinematic dynamo model is a necessary prerequisite for any prospective nonlinear dynamo theory. The theory is developed for an arbitrary degree of compressibility and formally in d dimensions, which generalizes the previously known results, elicits the structure of the solutions, and uncovers a number of new effects. The magnetic energy spectra are studied as they grow and spread over scales during the initial stage of the field amplification. Exact Greens-function solutions are obtained. The spectral theory is supplemented by the study of magnetic-field correlation functions in the configuration space, where the dynamo problem can be mapped onto a particular one-dimensional quantum-mechanical problem. The latter approach is most suitable for the description of the kinematic dynamo in the long-time limit, i.e. when the magnetic excitation has spread over all scales present in the system. A simple way of calculating the growth rates of the magnetic fields in this long-time limit is proposed.



قيم البحث

اقرأ أيضاً

A weak fluctuating magnetic field embedded into a turbulent conducting medium grows exponentially while its characteristic scale decays. In the ISM and protogalactic plasmas, the magnetic Pr is very large, so a broad spectrum of growing magnetic fluc tuations is excited at subviscous scales. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to rapid transverse field direction reversals, while the scale of the field variation along itself stays approximately constant. Specifically, we find that the field strength and the field-line curvature are anticorrelated, and the curvature possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.
This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 1<Re<6700. In the limit Pm<<1, Rm_c is ~3 times larger than for Pm>1. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit Re>>Rm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1<Rm<Rm_c, the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k^{-1} spectrum above the resistive scale is examined. At low Rm<1, the induced fluctuations are well described by the quasistatic approximation; the k^{-11/3} spectrum is confirmed for the first time in direct numerical simulations.
In this study we discuss two key issues related to a small-scale dynamo instability at low magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for the growth rate of small-scale dynamo instability in the vicinity of the dynamo threshold; (ii) the existence of the Golitsyn spectrum of magnetic fluctuations in small-scale dynamos. There are two different asymptotics for the small-scale dynamo growth rate: in the vicinity of the threshold of the excitation of the small-scale dynamo instability, $lambda propto ln({rm Rm}/ {rm Rm}^{rm cr})$, and when the magnetic Reynolds number is much larger than the threshold of the excitation of the small-scale dynamo instability, $lambda propto {rm Rm}^{1/2}$, where ${rm Rm}^{rm cr}$ is the small-scale dynamo instability threshold in the magnetic Reynolds number ${rm Rm}$. We demonstrated that the existence of the Golitsyn spectrum of magnetic fluctuations requires a finite correlation time of the random velocity field. On the other hand, the influence of the Golitsyn spectrum on the small-scale dynamo instability is minor. This is the reason why it is so difficult to observe this spectrum in direct numerical simulations for the small-scale dynamo with low magnetic Prandtl numbers.
We present a three--pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers $P_M$. The difficulty of resolving a large range of scales is circumvented by combining Direct Numerical Simulations, a Lagrangian-averaged model, an d Large-Eddy Simulations (LES). The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are: (i) dynamos are observed from $P_M=1$ down to $P_M=10^{-2}$; (ii) the critical magnetic Reynolds number increases sharply with $P_M^{-1}$ as turbulence sets in and then saturates; (iii) in the linear growth phase, the most unstable magnetic modes move to small scales as $P_M$ is decreased and a Kazantsev $k^{3/2}$ spectrum develops; then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.
We study the intermittency and field-line structure of the MHD turbulence in plasmas with very large magnetic Prandtl numbers. In this regime, which is realized in the interstellar medium, some accretion disks, protogalaxies, galaxy-cluster gas, earl y Universe, etc., magnetic fluctuations can be excited at scales below the viscous cutoff. The salient feature of the resulting small-scale magnetic turbulence is the folded structure of the fields. It is characterized by very rapid transverse spatial oscillation of the field direction, while the field lines remain largely unbent up to the scale of the flow. Quantitatively, the fluctuation level and the field-line geometry can be studied in terms of the statistics of the field strength and of the field-line curvature. In the kinematic limit, the distribution of the field strength is an expanding lognormal, while that of the field-line curvature K is stationary and has a power tail K^{-13/7}. The field strength and curvature are anticorrelated, i.e. the growing fields are mostly flat, while the sharply curved fields remain relatively weak. The field, therefore, settles into a reduced-tension state. Numerical simulations demonstrate three essential features of the nonlinear regime. First, the total magnetic energy is equal to the total kinetic energy. Second, the intermittency is partially suppressed compared to the kinematic case, as the fields become more volume-filling and their distribution develops an exponential tail. Third, the folding structure of the field is unchanged from the kinematic case: the anticorrelation between the field strength and the curvature persists and the distribution of the latter retains the same power tail. We propose a model of back reaction based on the folding picture that reproduces all of the above numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا