ﻻ يوجد ملخص باللغة العربية
This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 1<Re<6700. In the limit Pm<<1, Rm_c is ~3 times larger than for Pm>1. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit Re>>Rm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1<Rm<Rm_c, the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k^{-1} spectrum above the resistive scale is examined. At low Rm<1, the induced fluctuations are well described by the quasistatic approximation; the k^{-11/3} spectrum is confirmed for the first time in direct numerical simulations.
We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the ind
We consider the induction of magnetic field in flows of electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive lengthscales, we propose a new num
The excitation and further sustenance of large-scale magnetic fields in rotating astrophysical systems, including planets, stars and galaxies, is generally thought to involve a fluid magnetic dynamo effect driven by helical magnetohydrodynamic turbul
The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows wi
We present a three--pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers $P_M$. The difficulty of resolving a large range of scales is circumvented by combining Direct Numerical Simulations, a Lagrangian-averaged model, an