ﻻ يوجد ملخص باللغة العربية
We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations of the central region (about 450 pc in radius) of M82 with the Nobeyama Millimeter Array, and have successfully imaged a molecular superbubble and spurs. The center of the superbubble is clearly shifted from the nucleus by 140 pc. This position is close to that of the massive black hole (BH) of >460 Mo and the 2.2 micron secondary peak (a luminous supergiant dominated cluster), which strongly suggests that these objects may be related to the formation of the superbubble. Consideration of star formation in the cluster based on the infrared data indicates that (1) energy release from supernovae can account for the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs available for building-up the massive BH may be much higher than 460 Mo, and (3) it is possible to form the middle-mass BH of 100-1000 Mo within the timescale of the superbubble. We suggest that the massive BH was produced and is growing in the intense starburst region.
We present high spatial resolution (2.3x1.9 or 43 pc x 36 pc at D = 3.9 Mpc) 100 GHz millimeter-wave continuum emission observations with the Nobeyama Millimeter Array toward an expanding molecular superbubble in the central region of M82. The 100 GH
We present the results of 16 years of monitoring stellar orbits around the massive black hole in center of the Milky Way using high resolution NIR techniques. This work refines our previous analysis mainly by greatly improving the definition of the c
The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite reso
Pulsars, if existing and detectable in the immediate vicinity of the massive black hole (MBH) in the Galactic center (GC), may be used as a superb tool to probe both the environment and the metric of the central MBH. The recent discovery of a magneti
The $l!=!+1.!!^circ3$ region in the Galactic center is characterized by multiple shell-like structures and their extremely broad velocity widths. We revisit the molecular superbubble hypothesis for this region, based on high resolution maps of CO {it