ترغب بنشر مسار تعليمي؟ اضغط هنا

Some Donaldson invariants of CP^2

50   0   0.0 ( 0 )
 نشر من قبل Stein A. Stromme
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Donaldson numbers $q_{17}(CP^2)=2540$ and $q_{21}(CP^2)=233208$.



قيم البحث

اقرأ أيضاً

We present some computations of higher rank refined Donaldson-Thomas invariants on local curve geometries, corresponding to local D6-D2-D0 or D4-D2-D0 configurations. A refined wall-crossing formula for invariants with higher D6 or D4 ranks is derive d and verified to agree with the existing formulas under the unrefined limit. Using the formula, refined invariants on the $(-1,-1)$ and $(-2,0)$ local rational curve with higher D6 or D4 ranks are computed.
159 - Kentaro Nagao 2010
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality an d a certain symmetry for the higher rank invariants.
186 - Kentaro Nagao 2011
We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
82 - Yalong Cao , Martijn Kool 2017
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when $L$ corresponds to a smooth divisor on $X$. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by $exp(M(q)-1)$, where $M(q)$ denotes the MacMahon function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا