ﻻ يوجد ملخص باللغة العربية
The two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter region close to the triangular lattice. The frustration enlarges the region of superconductivity when $t<0$ for the hole-doped case, which is equivalent to $t>0$ for electron doping. We also discuss the SU(2) degeneracy at half-filling. The d+id state probably corresponds to the spin gap state at half-filling.
We theoretically investigate twisted structures where each layer is composed of a strongly correlated material. In particular, we study a twisted t-J model of cuprate multilayers within the slave-boson mean field theory. This treatment encompasses th
The internal magnetic field distribution in a mixed state of a cuprate superconductor, Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ ($T_{rm c}simeq28.5$ K, near the optimal doping), was measured by muon spin rotation ($mu$SR) technique up to 60 kOe. The $mu$SR line
The recent findings about two distinct quasiparticle inelastic scattering rates in angle-dependent magnetoresistance (ADMR) experiments in overdoped high-$T_c$ cuprates superconductors have motivated many discussions related to the link between super
It has often been suggested that correlation effects suppress the small e_g Fermi surface pockets of NaxCoO_2 that are predicted by LDA, but absent in ARPES measurements. It appears that within the dynamical mean field theory (DMFT) the ARPES can be
A weak magnetic order was found in a non-superconducting bilayered-hydrate Na$_{x}$CoO$_{2}cdot y$H$_{2}$O sample by a Co Nuclear Quadrupole Resonance (NQR) measurement. The nuclear spin-lattice relaxation rate divided by temperature $1/T_1T$ shows a