ترغب بنشر مسار تعليمي؟ اضغط هنا

WildWood: a new Random Forest algorithm

219   0   0.0 ( 0 )
 نشر من قبل Stephane Gaiffas Pr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce WildWood (WW), a new ensemble algorithm for supervised learning of Random Forest (RF) type. While standard RF algorithms use bootstrap out-of-bag samples to compute out-of-bag scores, WW uses these samples to produce improved predictions given by an aggregation of the predictions of all possible subtrees of each fully grown tree in the forest. This is achieved by aggregation with exponential weights computed over out-of-bag samples, that are computed exactly and very efficiently thanks to an algorithm called context tree weighting. This improvement, combined with a histogram strategy to accelerate split finding, makes WW fast and competitive compared with other well-established ensemble methods, such as standard RF and extreme gradient boosting algorithms.

قيم البحث

اقرأ أيضاً

We propose a dynamic boosted ensemble learning method based on random forest (DBRF), a novel ensemble algorithm that incorporates the notion of hard example mining into Random Forest (RF) and thus combines the high accuracy of Boosting algorithm with the strong generalization of Bagging algorithm. Specifically, we propose to measure the quality of each leaf node of every decision tree in the random forest to determine hard examples. By iteratively training and then removing easy examples from training data, we evolve the random forest to focus on hard examples dynamically so as to learn decision boundaries better. Data can be cascaded through these random forests learned in each iteration in sequence to generate predictions, thus making RF deep. We also propose to use evolution mechanism and smart iteration mechanism to improve the performance of the model. DBRF outperforms RF on three UCI datasets and achieved state-of-the-art results compared to other deep models. Moreover, we show that DBRF is also a new way of sampling and can be very useful when learning from imbalanced data.
Most real-world data are scattered across different companies or government organizations, and cannot be easily integrated under data privacy and related regulations such as the European Unions General Data Protection Regulation (GDPR) and China Cybe r Security Law. Such data islands situation and data privacy & security are two major challenges for applications of artificial intelligence. In this paper, we tackle these challenges and propose a privacy-preserving machine learning model, called Federated Forest, which is a lossless learning model of the traditional random forest method, i.e., achieving the same level of accuracy as the non-privacy-preserving approach. Based on it, we developed a secure cross-regional machine learning system that allows a learning process to be jointly trained over different regions clients with the same user samples but different attribute sets, processing the data stored in each of them without exchanging their raw data. A novel prediction algorithm was also proposed which could largely reduce the communication overhead. Experiments on both real-world and UCI data sets demonstrate the performance of the Federated Forest is as accurate as the non-federated version. The efficiency and robustness of our proposed system had been verified. Overall, our model is practical, scalable and extensible for real-life tasks.
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric met hod for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local $ell_1$-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.
Autonomous game design, generating games algorithmically, has been a longtime goal within the technical games research field. However, existing autonomous game design systems have relied in large part on human-authoring for game design knowledge, suc h as fitness functions in search-based methods. In this paper, we describe an experiment to attempt to learn a human-like fitness function for autonomous game design in an adversarial manner. While our experimental work did not meet our expectations, we present an analysis of our system and results that we hope will be informative to future autonomous game design research.
With the emergence of the big data age, the issue of how to obtain valuable knowledge from a dataset efficiently and accurately has attracted increasingly attention from both academia and industry. This paper presents a Parallel Random Forest (PRF) a lgorithm for big data on the Apache Spark platform. The PRF algorithm is optimized based on a hybrid approach combining data-parallel and task-parallel optimization. From the perspective of data-parallel optimization, a vertical data-partitioning method is performed to reduce the data communication cost effectively, and a data-multiplexing method is performed is performed to allow the training dataset to be reused and diminish the volume of data. From the perspective of task-parallel optimization, a dual parallel approach is carried out in the training process of RF, and a task Directed Acyclic Graph (DAG) is created according to the parallel training process of PRF and the dependence of the Resilient Distributed Datasets (RDD) objects. Then, different task schedulers are invoked for the tasks in the DAG. Moreover, to improve the algorithms accuracy for large, high-dimensional, and noisy data, we perform a dimension-reduction approach in the training process and a weighted voting approach in the prediction process prior to parallelization. Extensive experimental results indicate the superiority and notable advantages of the PRF algorithm over the relevant algorithms implemented by Spark MLlib and other studies in terms of the classification accuracy, performance, and scalability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا