ﻻ يوجد ملخص باللغة العربية
We describe a unified classical approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. To fill the gap between experiment and theory, we also consider the influences of small circuit asymmetry and the finite length of the feedlines, and describe a procedure to correct them in typical measurement results. We show that, similar to the transmission coefficient of a hanger-type resonator, the reflection coefficient of a necklace- or bridge-type resonator does also contain a reference point which can be used to characterize the electrical properties of a microwave resonator in a single measurement. Our results provide a comprehensive understanding of superconducting microwave resonators from the design concepts to the characterization details.
We describe a unified quantum approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. We also generalize the method to a chain of resonators in either hanger- or necklace-type, and reve
We present a method to synthesize an arbitrary quantum state of two superconducting resonators. This state-synthesis algorithm utilizes a coherent interaction of each resonator with a tunable artificial atom to create entangled quantum superpositions
We investigate the ultrastrong tunable coupler for coupling of superconducting resonators. Obtained coupling constant exceeds 1 GHz, and the wide range tunability is achieved both antiferromagnetics and ferromagnetics from -1086 MHz to 604 MHz. Ultra
We present an experimental demonstration as well as a theoretical model of an integrated circuit designed for the manipulation of a microwave field down to the single-photon level. The device is made of a superconducting resonator coupled to a transm
Superconducting quantum computing architectures comprise resonators and qubits that experience energy loss due to two-level systems (TLS) in bulk and interfacial dielectrics. Understanding these losses is critical to improving performance in supercon