ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining interface dielectric losses in superconducting coplanar waveguide resonators

97   0   0.0 ( 0 )
 نشر من قبل Greg Calusine
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting quantum computing architectures comprise resonators and qubits that experience energy loss due to two-level systems (TLS) in bulk and interfacial dielectrics. Understanding these losses is critical to improving performance in superconducting circuits. In this work, we present a method for quantifying the TLS losses of different bulk and interfacial dielectrics present in superconducting coplanar waveguide (CPW) resonators. By combining statistical characterization of sets of specifically designed CPW resonators on isotropically etched silicon substrates with detailed electromagnetic modeling, we determine the separate loss contributions from individual material interfaces and bulk dielectrics. This technique for analyzing interfacial TLS losses can be used to guide targeted improvements to qubits, resonators, and their superconducting fabrication processes.

قيم البحث

اقرأ أيضاً

Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications that reduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 $mu$m into the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.
We study the loss rate for a set of lambda/2 coplanar waveguide resonators at millikelvin temperatures (20 mK - 900mK) and different applied powers (3E-19 W - 1E-12 W). The loss rate becomes power independent below a critical power. For a fixed power , the loss rate increases significantly with decreasing temperature. We show that this behavior can be caused by two-level systems in the surrounding dielectric materials. Interestingly, the influence of the two-level systems is of the same order of magnitude for the different material combinations. That leads to the assumption that the nature of these two-level systems is material independent.
We report on the design, fabrication and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the mag netic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing and electron paramagnetic resonance.
Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures in both the many photon and single photon limits, i.e. high and low power regimes, respectively. At high power, internal quality factors ($Q_i$s) higher than $10^7$ were measured for TiN with predominantly a (200)-TiN orientation. Films that showed significant (111)-TiN texture invariably had much lower $Q_i$s, on the order of $10^5$. Our studies show that the (200)-TiN is favored for growth at high temperature on either bare Si or SiN buffer layers. However, growth on bare sapphire or Si(100) at low temperature resulted in primarily a (111)-TiN orientation. Ellipsometry and Auger measurements indicate that the (200)-TiN growth on the bare Si substrates is correlated with the formation of a thin, $approx 2$ nm, layer of SiN during the pre-deposition procedure. In the single photon regime, $Q_i$ of these films exceeded $8times10^5$, while thicker SiN buffer layers led to reduced $Q_i$s at low power.
Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfa ces in the resonator, and investigate the dependence on power, resonator geometry, and dimensions. Surprisingly, the dominant surface loss is found to arise from the metal-substrate and substrate-air interfaces. This result will be useful in guiding device optimization, even with conventional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا