ترغب بنشر مسار تعليمي؟ اضغط هنا

JAM mean-field update: mean-field effects on collective flow in high-energy heavy-ion collisions at $sqrt{s_{NN}}=2-20$ GeV energies

195   0   0.0 ( 0 )
 نشر من قبل Yasushi Nara Dr
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider different implementations of momentum-dependent hadronic mean-fields in the relativistic quantum molecular dynamics (RQMD) framework. First, Lorentz scalar implementation of Skyrme type potential is examined. Then, full implementation of Skyrme type potential as a Lorentz vector in the RQMD approach is proposed. We find that scalar implementation of Skyrme force is too weak to generate repulsion explaining observed data of sideward flows at $sqrt{s_{NN}}<10$ GeV, while vector implementation gives collective flows compatible with the data for a wide range of beam energies $2.7 <sqrt{s_{NN}}<20$ GeV. We show that our approach reproduces the negative proton directed flow at $sqrt{s_{NN}}>10$ GeV discovered by the experiments. We discuss the dynamical generation mechanisms of the directed flow within a conventional hadronic mean-field. A positive slope of proton directed flow is generated predominantly during compression stages of heavy-ion collisions by the strong repulsive interaction due to high baryon densities. In contrast, at the expansion stages of the collision, the negative directed flow is generated more strongly over the positive one by the tilted expansion and shadowing by the spectator matter. At lower collision energies $sqrt{s_{NN}}<10$ GeV, the positive flow wins against the negative flow because of a long compression time. On the other hand, at higher energies $sqrt{s_{NN}}>10$ GeV, negative flow wins because of shorter compression time and longer expansion time. A transition beam energy from positive to negative flow is highly sensitive to the strength of the interaction.

قيم البحث

اقرأ أيضاً

Global polarization of $Lambda$ and $bar{Lambda}$ hyperons in Au+Au collisions at collision energies $sqrt{s_{NN}}=$ 4-40 GeV in the midrapidity region and total polarization, i.e. averaged over all rapidities, are studied within the scope of the the rmodynamical approach. The relevant vorticity is simulated within the model of the three-fluid dynamics (3FD). It is found that the performed rough estimate of the global midrapidity polarization quite satisfactorily reproduces the experimental STAR data on the polarization, especially its collision-energy dependence. The total polarization increases with the collision energy rise, which is in contrast to the decrease of the midrapidity polarization. This suggests that at high collision energies the polarization reaches high values in fragmentation regions.
196 - Hui Liu , Dingwei Zhang , Shu He 2019
Light nuclei production is sensitive to the baryon density fluctuations and can be used to probe the QCD phase transition in relativistic heavy-ion collisions. In this work, we studied the production of proton, deuteron, triton in central Au+Au colli sions at $sqrt{s_{mathrm{NN}}}$ = 5, 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV from a transport model (JAM). Based on the coalescence production of light nuclei, we calculated the energy dependence of rapidity density $dN/dy$ and particle ratios ($d/p$, $t/p$, and $t/d$). More importantly, the yield ratio $N_{{t}} times N_{{p}} / N_{{d}}^{2}$, which is sensitive to the neutron density fluctuations, shows a flat energy dependence and cannot describe the non-monotonic trend observed by the STAR experiment. Based on the nucleon coalescence, this work can provide constraint and reference to search for the QCD critical point and/or first order phase transition with light nuclei production in future heavy-ion collision experiments.
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a s tate-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model.
The correlation between the mean transverse momentum of outgoing particles, $langle p_t rangle$, and the magnitude of anisotropic flow, $v_n$, has recently been measured in Pb+Pb collisions at the CERN Large Hadron Collider, as a function of the coll ision centrality. We confirm the previous observation that event-by-event hydrodynamics predicts a correlation between $v_n$ and $langle p_t rangle$ that is similar to that measured in data. We show that the magnitude of this correlation can be directly predicted from the initial condition of the hydrodynamic calculation, for $n=2,3$, if one replaces $v_n$ by the corresponding initial-state anisotropy, $varepsilon_n$, and $langle p_trangle$ by the total energy per unit rapidity of the fluid at the beginning of the hydrodynamic expansion.
104 - X. G. Deng , Y. G. Ma 2020
Light nuclei production in relativistic $^{197}$Au + $^{197}$Au collisions from 7.7 to 80 GeV is investigated within the Ultra-relativistic-Quantum-Molecular-Dynamics model (UrQMD) with a naive coalescence approach. The results of the production of l ight nuclei at midrapidity can essentially match up the experimental data and a slight enhancement of combined ratio of ${N_{p}N_{t}}/{N_{d}^{2}}$ where $N_p, N_d$ and $N_t$ represent respectively the yields of proton, deuteron and triton, which is sensitive to the neutron density fluctuations, occurs around 20 GeV. However, this enhanced ${N_{p}N_{t}}/{N_{d}^{2}}$ ratio should not be over-understood considering that the present UrQMD model is a cascade version without equation of state (EoS), i.e. there is an absence of critical end point mechanism. Furthermore, within different rapidity regions, the kinetic temperatures of different light nuclei are extracted by the Blast-wave model analysis and ratios among different light nuclei are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا