ﻻ يوجد ملخص باللغة العربية
Global polarization of $Lambda$ and $bar{Lambda}$ hyperons in Au+Au collisions at collision energies $sqrt{s_{NN}}=$ 4-40 GeV in the midrapidity region and total polarization, i.e. averaged over all rapidities, are studied within the scope of the thermodynamical approach. The relevant vorticity is simulated within the model of the three-fluid dynamics (3FD). It is found that the performed rough estimate of the global midrapidity polarization quite satisfactorily reproduces the experimental STAR data on the polarization, especially its collision-energy dependence. The total polarization increases with the collision energy rise, which is in contrast to the decrease of the midrapidity polarization. This suggests that at high collision energies the polarization reaches high values in fragmentation regions.
We consider different implementations of momentum-dependent hadronic mean-fields in the relativistic quantum molecular dynamics (RQMD) framework. First, Lorentz scalar implementation of Skyrme type potential is examined. Then, full implementation of
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a s
Light nuclei production in relativistic $^{197}$Au + $^{197}$Au collisions from 7.7 to 80 GeV is investigated within the Ultra-relativistic-Quantum-Molecular-Dynamics model (UrQMD) with a naive coalescence approach. The results of the production of l
The isobaric collisions of $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr have recently been proposed to discern the charge separation signal of the chiral magnetic effect (CME). In this article, we employ the string melting vers
Baryon-strangeness correlation (C$_{BS}$) has been investigated with a multi-phase transport model (AMPT) in $^{197}$Au + $^{197}$Au collisions at $sqrt{s_{NN}}$ = 200 GeV. The centrality dependence of C$_{BS}$ is presented within the model, from par