ﻻ يوجد ملخص باللغة العربية
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in these Monte Carlo algorithms is typically performed with Markov Chain Monte Carlo algorithms employing local update rules, which often suffer from long autocorrelation times and interdependent samples. We propose a sampling algorithm that generates independent samples from a PEPS, bypassing all problems related to finite autocorrelation times. This algorithm is a generalization of an existing direct sampling algorithm for unitary tensor networks. We introduce an auxiliary probability distribution from which independent samples can be drawn, and combine it with importance sampling in order to evaluate expectation values accurately. We benchmark our algorithm on the classical Ising model and on variational optimization of two-dimensional quantum spin models.
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to t
Based on the scheme of variational Monte Carlo sampling, we develop an accurate and efficient two-dimensional tensor-network algorithm to simulate quantum lattice models. We find that Monte Carlo sampling shows huge advantages in dealing with finite
The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite e