ﻻ يوجد ملخص باللغة العربية
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to the fermionic PEPS (fPEPS). To simplify the implementation, we introduce a fermi arrow notation to specify the order of the fermion operators in the virtual entangled EPR pairs. By defining some local operation rules associated with the fermi arrows, one can implement fPEPS algorithms very similar to that of standard PEPS. We benchmark the method for the interacting spinless fermion models, and the t-J models. The numerical calculations show that the gradient optimization greatly improves the results of simple update method. Furthermore, much larger virtual bond dimensions ($D$) and truncation dimensions ($D_c$) than those of boson and spin systems are necessary to converge the results. The method therefore offer a powerful tool to simulate fermion systems because it has much lower scaling than the direct contraction methods.
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in t
The projected entangled pair states (PEPS) methods have been proved to be powerful tools to solve the strongly correlated quantum many-body problems in two-dimension. However, due to the high computational scaling with the virtual bond dimension $D$,
The infinite Projected Entangled-Pair State (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm