ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions

65   0   0.0 ( 0 )
 نشر من قبل Jordan Fran\\c{c}ois
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we consider how the bundle geometry of field space interplays with the covariant phase space methods so as to allow to write results of some generality on the presymplectic structure of invariant gauge theories coupled to matter. We obtain in particular the generic form of Noether charges associated with field-independent and field-dependent gauge parameters, as well as their Poisson bracket. We also provide the general field-dependent gauge transformations of the presymplectic potential and 2-form, which clearly highlight the problem posed by boundaries in generic situations. We then conduct a comparative analysis of two strategies recently considered to evade the boundary problem and associate a modified symplectic structure to a gauge theory over a bounded regions: namely the use of edge modes on the one hand, and of variational connections on the other. To do so, we first try to give the clearest geometric account of both, showing in particular that edge modes are a special case of differential geometric tool of gauge symmetry reduction known as the dressing field method. Applications to Yang-Mills theory and General Relativity reproduce or generalise several results of the recent literature.



قيم البحث

اقرأ أيضاً

We study cohomological obstructions to the existence of global conserved quantities. In particular, we show that, if a given local variational problem is supposed to admit global solutions, certain cohomology classes cannot appear as obstructions. Vi ce versa, we obtain a new type of cohomological obstruction to the existence of global solutions for a variational problem.
In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations pa rametrized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.
By resorting to Noethers Second Theorem, we relate the generalized Bianchi identities for Lagrangian field theories on gauge-natural bundles with the kernel of the associated gauge-natural Jacobi morphism. A suitable definition of the curvature of ga uge-natural variational principles can be consequently formulated in terms of the Hamiltonian connection canonically associated with a generalized Lagrangian obtained by contracting field equations.
Recently we found that canonical gauge-natural superpotentials are obtained as global sections of the {em reduced} $(n-2)$-degree and $(2s-1)$-order quotient sheaf on the fibered manifold $bY_{zet} times_{bX} mathfrak{K}$, where $mathfrak{K}$ is an a ppropriate subbundle of the vector bundle of (prolongations of) infinitesimal right-invariant automorphisms $bar{Xi}$. In this paper, we provide an alternative proof of the fact that the naturality property $cL_{j_{s}bar{Xi}_{H}}omega (lambda, mathfrak{K})=0$ holds true for the {em new} Lagrangian $omega (lambda, mathfrak{K})$ obtained contracting the Euler--Lagrange form of the original Lagrangian with $bar{Xi}_{V}in mathfrak{K}$. We use as fundamental tools an invariant decomposition formula of vertical morphisms due to Kolav{r} and the theory of iterated Lie derivatives of sections of fibered bundles. As a consequence, we recover the existence of a canonical generalized energy--momentum conserved tensor density associated with $omega (lambda, mathfrak{K})$.
The paper contains a differential-geometric foundations for an attempt to formulate Lagrangian (canonical) quantum field theory on fibre bundles. In it the standard Hilbert space of quantum field theory is replace with a Hilbert bundle; the former pl aying a role of a (typical) fibre of the letter one. Suitable sections of that bundle replace the ordinary state vectors and the operators on the systems Hilbert space are transformed into morphisms of the same bundle. In particular, the field operators are mapped into corresponding field morphisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا