ترغب بنشر مسار تعليمي؟ اضغط هنا

A mathematical base for Fibre bundle formulation of Lagrangian Quantum Field Theory

142   0   0.0 ( 0 )
 نشر من قبل Bozhidar Zakhariev Iliev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper contains a differential-geometric foundations for an attempt to formulate Lagrangian (canonical) quantum field theory on fibre bundles. In it the standard Hilbert space of quantum field theory is replace with a Hilbert bundle; the former playing a role of a (typical) fibre of the letter one. Suitable sections of that bundle replace the ordinary state vectors and the operators on the systems Hilbert space are transformed into morphisms of the same bundle. In particular, the field operators are mapped into corresponding field morphisms.



قيم البحث

اقرأ أيضاً

82 - Junshan Lin , Hai Zhang 2021
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, the associated Zak phase (or Berry phase) may not be quantized. We investigate the existence of an interface mode which is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values $0, pi$. We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm-Liouville operators. The methods and results can be extended to general topological Sturm-Liouville systems in one dimension.
246 - Karl-Henning Rehren 2016
Boundary conditions in relativistic QFT can be classified by deep results in the theory of braided or modular tensor categories.
For each of the $8$ isotropy classes of elastic materials, we consider a homogeneous random field taking values in the fixed point set $mathsf{V}$ of the corresponding class, that is isotropic with respect to the natural orthogonal representation of a group lying between the isotropy group of the class and its normaliser. We find the general form of the correlation tensors of orders $1$ and $2$ of such a field, and the fields spectral expansion.
In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum sys tems (i.e., systems with finite and infinite degrees of freedom). The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of entropy production associated to all the irreversible processes involved. Hence from a mathematical point of view, our variational formalism may be regarded as a generalization of the Lagrange-dAlembert principle used in nonholonomic mechanics. In order to formulate the nonholonomic constraint, we associate to each irreversible process a variable called the thermodynamic displacement. This allows the definition of a corresponding variational constraint. Our theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. For the continuum case, the variational formalism is naturally extended to the setting of infinite dimensional nonholonomic Lagrangian systems and is expressed in material representation, while its spatial version is obtained via a nonholonomic Lagrangian reduction by symmetry. In the continuum case, our theory is systematically illustrated by the example of a multicomponent viscous heat conducting fluid with chemical reactions and mass transfer.
A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems [1-3], but the mechanism of coarsening in faceted surfaces requires the addition of convolution terms recalling the work of Smoluchowski [4] and Schumann [5] on coalescence. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a framework for the investigation of faceted surfaces evolving under arbitrary dynamics. [1] I. Lifshitz, V. Slezov, Soviet Physics JETP 38 (1959) 331-339. [2] I. Lifshitz, V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. [3] C. Wagner, Elektrochemie 65 (1961) 581-591. [4] M. von Smoluchowski, Physikalische Zeitschrift 17 (1916) 557-571. [5] T. Schumann, J. Roy. Met. Soc. 66 (1940) 195-207.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا