ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Document-Level Paraphrase Generation with Sentence Rewriting and Reordering

105   0   0.0 ( 0 )
 نشر من قبل Zhe Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.

قيم البحث

اقرأ أيضاً

In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), w hich extends neural machine translation (NMT) models to support the generation of diverse paraphrases with implicit rewriting patterns. Our experimental results on two real-world benchmark datasets demonstrate that our model generates at least one order of magnitude more diverse outputs than the baselines in terms of a new evaluation metric Jeffreys Divergence. We have also conducted extensive experiments to understand various properties of our model with a focus on diversity.
99 - Zhecheng An , Sicong Liu 2019
Paraphrase generation is an important and challenging natural language processing (NLP) task. In this work, we propose a deep generative model to generate paraphrase with diversity. Our model is based on an encoder-decoder architecture. An additional transcoder is used to convert a sentence into its paraphrasing latent code. The transcoder takes an explicit pattern embedding variable as condition, so diverse paraphrase can be generated by sampling on the pattern embedding variable. We use a Wasserstein GAN to align the distributions of the real and generated paraphrase samples. We propose a multi-class extension to the Wasserstein GAN, which allows our generative model to learn from both positive and negative samples. The generated paraphrase distribution is forced to get closer to the positive real distribution, and be pushed away from the negative distribution in Wasserstein distance. We test our model in two datasets with both automatic metrics and human evaluation. Results show that our model can generate fluent and reliable paraphrase samples that outperform the state-of-art results, while also provides reasonable variability and diversity.
Generating long and coherent text is an important but challenging task, particularly for open-ended language generation tasks such as story generation. Despite the success in modeling intra-sentence coherence, existing generation models (e.g., BART) still struggle to maintain a coherent event sequence throughout the generated text. We conjecture that this is because of the difficulty for the decoder to capture the high-level semantics and discourse structures in the context beyond token-level co-occurrence. In this paper, we propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process. To this end, we propose two pretraining objectives to learn the representations by predicting inter-sentence semantic similarity and distinguishing between normal and shuffled sentence orders. Extensive experiments show that our model can generate more coherent texts than state-of-the-art baselines.
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to imp rove the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a textit{generator} and an textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا