ﻻ يوجد ملخص باللغة العربية
Self-training achieves enormous success in various semi-supervised and weakly-supervised learning tasks. The method can be interpreted as a teacher-student framework, where the teacher generates pseudo-labels, and the student makes predictions. The two models are updated alternatingly. However, such a straightforward alternating update rule leads to training instability. This is because a small change in the teacher may result in a significant change in the student. To address this issue, we propose {ours}, short for differentiable self-training, that treats teacher-student as a Stackelberg game. In this game, a leader is always in a more advantageous position than a follower. In self-training, the student contributes to the prediction performance, and the teacher controls the training process by generating pseudo-labels. Therefore, we treat the student as the leader and the teacher as the follower. The leader procures its advantage by acknowledging the followers strategy, which involves differentiable pseudo-labels and differentiable sample weights. Consequently, the leader-follower interaction can be effectively captured via Stackelberg gradient, obtained by differentiating the followers strategy. Experimental results on semi- and weakly-supervised classification and named entity recognition tasks show that our model outperforms existing approaches by large margins.
In order to train robust deep learning models, large amounts of labelled data is required. However, in the absence of such large repositories of labelled data, unlabeled data can be exploited for the same. Semi-Supervised learning aims to utilize suc
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch betw
The impressive lifelong learning in animal brains is primarily enabled by plastic changes in synaptic connectivity. Importantly, these changes are not passive, but are actively controlled by neuromodulation, which is itself under the control of the b
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p
In a series of recent theoretical works, it was shown that strongly over-parameterized neural networks trained with gradient-based methods could converge exponentially fast to zero training loss, with their parameters hardly varying. In this work, we