ﻻ يوجد ملخص باللغة العربية
The notion of a contractible transformation on a graph was introduced by Ivashchenko as a means to study molecular spaces arising from digital topology and computer image analysis, and more recently has been applied to topological data analysis. Contractible transformations involve a list of four elementary moves that can be performed on the vertices and edges of a graph, and it has been shown by Chen, Yau, and Yeh that these moves preserve the simple homotopy type of the underlying clique complex. A graph is said to be ${mathcal I}$-contractible if one can reduce it to a single isolated vertex via a sequence of contractible transformations. Inspired by the notions of collapsible and non-evasive simplicial complexes, in this paper we study certain subclasses of ${mathcal I}$-contractible graphs where one can collapse to a vertex using only a subset of these moves. Our main results involve constructions of minimal examples of graphs for which the resulting classes differ, as well as a miminal counterexample to an erroneous claim of Ivashchenko from the literature. We also relate these classes of graphs to the notion of $k$-dismantlable graphs and $k$-collapsible complexes, and discuss some open questions.
We construct explicit minimal models for the (hyper)operads governing modular, cyclic and ordinary operads, and wheeled properads, respectively. Algebras for these models are homoto
We study graphs with the property that every edge-colouring admits a monochromatic cycle (the length of which may depend freely on the colouring) and describe those graphs that are minimal with this property. We show that every member in this class r
The neighborhood complex of a graph was introduced by Lovasz to provide topological lower bounds on chromatic number, and more general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes are also related to
A graph $G$ whose edges are coloured (not necessarily properly) contains a full rainbow matching if there is a matching $M$ that contains exactly one edge of each colour. We refute several conjectures on matchings in hypergraphs and full rainbow matc
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this pr