ﻻ يوجد ملخص باللغة العربية
We study graphs with the property that every edge-colouring admits a monochromatic cycle (the length of which may depend freely on the colouring) and describe those graphs that are minimal with this property. We show that every member in this class reduces recursively to one of the base graphs $K_5-e$ or $K_4vee K_4$ (two copies of $K_4$ identified at an edge), which implies that an arbitrary $n$-vertex graph with $e(G)geq 2n-1$ must contain one of those as a minor. We also describe three explicit constructions governing the reverse process. As an application we are able to establish Ramsey infiniteness for each of the three possible chromatic subclasses $chi=2, 3, 4$, the unboundedness of maximum degree within the class as well as Ramsey separability of the family of cycles of length $leq l$ from any of its proper subfamilies.
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this pr
For an integer $qge 2$, a graph $G$ is called $q$-Ramsey for a graph $H$ if every $q$-colouring of the edges of $G$ contains a monochromatic copy of $H$. If $G$ is $q$-Ramsey for $H$, yet no proper subgraph of $G$ has this property then $G$ is called
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, ErdH{o}s and Lov{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ cont
Given any graph $H$, a graph $G$ is said to be $q$-Ramsey for $H$ if every coloring of the edges of $G$ with $q$ colors yields a monochromatic subgraph isomorphic to $H$. Further, such a graph $G$ is said to be minimal $q$-Ramsey for $H$ if additiona
A graph $G$ is said to be $q$-Ramsey for a $q$-tuple of graphs $(H_1,ldots,H_q)$, denoted by $Gto_q(H_1,ldots,H_q)$, if every $q$-edge-coloring of $G$ contains a monochromatic copy of $H_i$ in color $i,$ for some $iin[q]$. Let $s_q(H_1,ldots,H_q)$ de