ﻻ يوجد ملخص باللغة العربية
Constraining the distribution of gas and dust in the inner 20 au of protoplanetary disks is difficult. At the same time, this region is thought to be responsible for most planet formation, especially around the water ice line at 3-10 au. Under the assumption that the gas is in a Keplerian disk, we use the exquisite sensitivity of the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA large program to construct radial surface brightness profiles with a ~3 au effective resolution for the CO isotopologue J=2-1 lines using the line velocity profile. IM Lup reveals a central depression in 13CO and C18O that is ascribed to a pileup of ~500 $M_oplus$ of dust in the inner 20 au, leading to a gas-to-dust ratio of around <10. This pileup is consistent with efficient drift of grains ($gtrsim$ 100 $M_oplus$ Myr$^{-1}$) and a local gas-to-dust ratio that suggests that the streaming instability could be active. The CO isotopologue emission in the GM Aur disk is consistent with a small (~15 au), strongly depleted gas cavity within the ~40 au dust cavity. The radial surface brightness profiles for both the AS 209 and HD 163296 disks show a local minimum and maximum in the C18O emission at the location of a known dust ring (~14 au) and gap (~10 au), respectively. This indicates that the dust ring has a low gas-to-dust ratio ($>$ 10) and that the dust gap is gas-rich enough to have optically thick C18O.
We observed HCO$^+$ $J=1-0$ and H$^{13}$CO$^+$ $J=1-0$ emission towards the five protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 as part of the MAPS project. HCO$^+$ is detected and mapped at 0.3arcsec,resolution in all fiv
Here we present high resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs $^{13}$CO and C$^{18}$O ($J$=2-1), (1-0), and C$^{17}$O (1-0) line
Understanding the temperature structure of protoplanetary disks is key to interpreting observations, predicting the physical and chemical evolution of the disk, and modeling planet formation processes. In this study, we constrain the two-dimensional
Planets form and obtain their compositions in dust and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental composi
Constraining dust properties of planet-forming disks via high angular resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuu