ﻻ يوجد ملخص باللغة العربية
Truncated conditional expectation functions are objects of interest in a wide range of economic applications, including income inequality measurement, financial risk management, and impact evaluation. They typically involve truncating the outcome variable above or below certain quantiles of its conditional distribution. In this paper, based on local linear methods, a novel, two-stage, nonparametric estimator of such functions is proposed. In this estimation problem, the conditional quantile function is a nuisance parameter that has to be estimated in the first stage. The proposed estimator is insensitive to the first-stage estimation error owing to the use of a Neyman-orthogonal moment in the second stage. This construction ensures that inference methods developed for the standard nonparametric regression can be readily adapted to conduct inference on truncated conditional expectations. As an extension, estimation with an estimated truncation quantile level is considered. The proposed estimator is applied in two empirical settings: sharp regression discontinuity designs with a manipulated running variable and randomized experiments with sample selection.
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam
Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions necessary for identifying CATE are estimated b
Instrumental variables (IV) regression is a popular method for the estimation of the endogenous treatment effects. Conventional IV methods require all the instruments are relevant and valid. However, this is impractical especially in high-dimensional
We provide a novel inferential framework to estimate the exact affine Stone index (EASI) model, and analyze welfare implications due to price changes caused by taxes. Our inferential framework is based on a non-parametric specification of the stochas
In this paper, a nonparametric maximum likelihood (ML) estimator for band-limited (BL) probability density functions (pdfs) is proposed. The BLML estimator is consistent and computationally efficient. To compute the BLML estimator, three approximate