ترغب بنشر مسار تعليمي؟ اضغط هنا

A class of periodic and quasi-periodic trajectories of particles settling under gravity in a viscous fluid

131   0   0.0 ( 0 )
 نشر من قبل Maria L. Ekiel-Jezewska
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate regular configurations of a small number of particles settling under gravity in a viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed in the point-particle approximation. A family of regular configurations is found with periodic oscillations of all the settling particles. The oscillations are shown to be robust under some out-of-phase rearrangements of the particles. In the presence of an additional particle above such a regular configuration, the particle periodic trajectories are horizontally repelled from the symmetry axis, and flattened vertically. The results are used to propose a mechanism how a spherical cloud, made of a large number of particles distributed at random, evolves and destabilizes.



قيم البحث

اقرأ أيضاً

77 - Akshay Bhatnagar 2020
We study the joint probability distributions of separation, $R$, and radial component of the relative velocity, $V_{rm R}$, of particles settling under gravity in a turbulent flow. We also obtain the moments of these distributions and analyze their a nisotropy using spherical harmonics. We find that the qualitative nature of the joint distributions remains the same as no gravity case. Distributions of $V_{rm R}$ for fixed values of $R$ show a power-law dependence on $V_{rm R}$ for a range of $V_{rm R}$, exponent of the power-law depends on the gravity. Effects of gravity are also manifested in the following ways: (a) moments of the distributions are anisotropic; the degree of anisotropy depends on particles Stokes number, but does not depend on $R$ for small values of $R$. (b) mean velocity of collision between two particles is decreased for particles having equal Stokes numbers but increased for particles having different Stokes numbers. For the later, collision velocity is set by the difference in their settling velocities.
Dynamics of regular clusters of many non-touching particles falling under gravity in a viscous fluid at low Reynolds number are analysed within the point-particle model. Evolution of two families of particle configurations is determined: 2 or 4 regul ar horizontal polygons (called `rings) centred above or below each other. Two rings fall together and periodically oscillate. Four rings usually separate from each other with chaotic scattering. For hundreds of thousands of initial configurations, a map of the cluster lifetime is evaluated, where the long-lasting clusters are centred around periodic solutions for the relative motions, and surrounded by regions of the chaotic scattering,in a similar way as it was observed by Janosi et al. (1997) for three particles only. These findings suggest to consider the existence of periodic orbits as a possible physical mechanism of the existence of unstable clusters of particles falling under gravity in a viscous fluid.
We present a numerical study of settling and clustering of small inertial particles in homogeneous and isotropic turbulence. Particles are denser than the fluid, but not in the limit of being much heavier than the displaced fluid. At fixed Reynolds a nd Stokes numbers we vary the fluid-to-particle mass ratio and the gravitational acceleration. The effect of varying one or the other is similar but not quite the same. We report non-monotonic behavior of the particles velocity skewness and kurtosis with the second parameter, and an associated anomalous behavior of the settling velocity when compared to the free-fall Stokes velocity, including loitering cases. Clustering increases for increasing gravitational acceleration, and for decreasing fluid-to-particle mass ratio.
Hydrodynamic interactions between two identical elastic dumbbells settling under gravity in a viscous fluid at low-Reynolds-number are investigated within the point-particle model. Evolution of a benchmark initial configuration is studied, in which t he dumbbells are vertical and their centres are aligned horizontally. Rigid dumbbells and pairs of separate beads starting from the same positions tumble periodically while settling down. We find that elasticity (which breaks time-reversal symmetry of the motion) significantly affects the systems dynamics. This is remarkable taking into account that elastic forces are always much smaller than gravity. We observe oscillating motion of the elastic dumbbells, which tumble and change their length non-periodically. Independently of the value of the spring constant, a horizontal hydrodynamic repulsion appears between the dumbbells - their centres of mass move apart from each other horizontally. The shift is fast for moderate values of the spring constant k, and slows down when k tends to zero or to infinity; in these limiting cases we recover the periodic dynamics reported in the literature. For moderate values of the spring constant, and different initial configurations, we observe the existence of a universal time-dependent solution to which the system converges after an initial relaxation phase. The tumbling time and the width of the trajectories in the centre-of-mass frame increase with time. In addition to its fundamental significance, the benchmark solution presented here is important to understand general features of systems with larger number of elastic particles, at regular and random configurations.
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro m, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا