ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to analyze the robust convergence of a class of parareal algorithms for solving parabolic problems. The coarse propagator is fixed to the backward Euler method and the fine propagator is a high-order single step integrator. Under some conditions on the fine propagator, we show that there exists some critical $J_*$ such that the parareal solver converges linearly with a convergence rate near $0.3$, provided that the ratio between the coarse time step and fine time step named $J$ satisfies $J ge J_*$. The convergence is robust even if the problem data is nonsmooth and incompatible with boundary conditions. The qualified methods include all absolutely stable single step methods, whose stability function satisfies $|r(-infty)|<1$, and hence the fine propagator could be arbitrarily high-order. Moreover, we examine some popular high-order single step methods, e.g., two-, three- and four-stage Lobatto IIIC methods, and verify that the corresponding parareal algorithms converge linearly with a factor $0.31$ and the threshold for these cases is $J_* = 2$. Intensive numerical examples are presented to support and complete our theoretical predictions.
We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an
We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen--Cahn equations. We apply a $k$th-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped m
This paper proposes a new class of arbitarily high-order conservative numerical schemes for the generalized Korteweg-de Vries (KdV) equation. This approach is based on the scalar auxiliary variable (SAV) method. The equation is reformulated into an e
We present a systematical approach to developing arbitrarily high order, unconditionally energy stable numerical schemes for thermodynamically consistent gradient flow models that satisfy energy dissipation laws. Utilizing the energy quadratization (
We design a Hybrid High-Order (HHO) scheme for the Poisson problem that is fully robust on polytopal meshes in the presence of small edges/faces. We state general assumptions on the stabilisation terms involved in the scheme, under which optimal erro