ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of Advanced Accelerator Concepts

107   0   0.0 ( 0 )
 نشر من قبل Jean-Luc Vay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Computer modeling is essential to research on Advanced Accelerator Concepts (AAC), as well as to their design and operation. This paper summarizes the current status and future needs of AAC systems and reports on several key aspects of (i) high-performance computing (including performance, portability, scalability, advanced algorithms, scalable I/Os and In-Situ analysis), (ii) the benefits of ecosystems with integrated workflows based on standardized input and output and with integrated frameworks developed as a community, and (iii) sustainability and reliability (including code robustness and usability).

قيم البحث

اقرأ أيضاً

94 - M. Ferrario , R. Assmann 2021
Recent years have seen spectacular progress in the development of innovative acceleration methods that are not based on traditional RF accelerating structures. These novel developments are at the interface of laser, plasma and accelerator physics and may potentially lead to much more compact and cost-effective accelerator facilities. While primarily focusing on the ability to accelerate charged particles with much larger gradients than traditional RF structures, these new techniques have yet to demonstrate comparable performances to RF structures in terms of both beam parameters and reproducibility. To guide the developments beyond the necessary basic R&D and concept validations, a common understanding and definition of required performance and beam parameters for an operational user facility is now needed. These innovative user facilities can include table-top light sources, medical accelerators, industrial accelerators or even high-energy colliders. This paper will review the most promising developments in new acceleration methods and it will present the status of on-going projects.
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency i nstability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedmans damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
This paper presents the state of the art of kinetic modeling techniques for simulating plasma kinetic dynamics in magnetospheres. We describe the critical numerical techniques for enabling large-scale kinetic simulations of magnetospheres: parameter scaling, implicit Particle-in-Cell schemes, and fluid-kinetic coupling. We show an application of these techniques to study particle acceleration and heating in asymmetric magnetic reconnection in the Ganymede magnetosphere.
Particle accelerators require constant tuning during operation to meet beam quality, total charge and particle energy requirements for use in a wide variety of physics, chemistry and biology experiments. Maximizing the performance of an accelerator f acility often necessitates multi-objective optimization, where operators must balance trade-offs between multiple objectives simultaneously, often using limited, temporally expensive beam observations. Usually, accelerator optimization problems are solved offline, prior to actual operation, with advanced beamline simulations and parallelized optimization methods (NSGA-II, Swarm Optimization). Unfortunately, it is not feasible to use these methods for online multi-objective optimization, since beam measurements can only be done in a serial fashion, and these optimization methods require a large number of measurements to converge to a useful solution.Here, we introduce a multi-objective Bayesian optimization scheme, which finds the full Pareto front of an accelerator optimization problem efficiently in a serialized manner and is thus a critical step towards practical online multi-objective optimization in accelerators.This method uses a set of Gaussian process surrogate models, along with a multi-objective acquisition function, which reduces the number of observations needed to converge by at least an order of magnitude over current methods.We demonstrate how this method can be modified to specifically solve optimization challenges posed by the tuning of accelerators.This includes the addition of optimization constraints, objective preferences and costs related to changing accelerator parameters.
60 - W. Herr 2016
This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا