ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Objective Bayesian Optimization for Accelerator Tuning

202   0   0.0 ( 0 )
 نشر من قبل Ryan Roussel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle accelerators require constant tuning during operation to meet beam quality, total charge and particle energy requirements for use in a wide variety of physics, chemistry and biology experiments. Maximizing the performance of an accelerator facility often necessitates multi-objective optimization, where operators must balance trade-offs between multiple objectives simultaneously, often using limited, temporally expensive beam observations. Usually, accelerator optimization problems are solved offline, prior to actual operation, with advanced beamline simulations and parallelized optimization methods (NSGA-II, Swarm Optimization). Unfortunately, it is not feasible to use these methods for online multi-objective optimization, since beam measurements can only be done in a serial fashion, and these optimization methods require a large number of measurements to converge to a useful solution.Here, we introduce a multi-objective Bayesian optimization scheme, which finds the full Pareto front of an accelerator optimization problem efficiently in a serialized manner and is thus a critical step towards practical online multi-objective optimization in accelerators.This method uses a set of Gaussian process surrogate models, along with a multi-objective acquisition function, which reduces the number of observations needed to converge by at least an order of magnitude over current methods.We demonstrate how this method can be modified to specifically solve optimization challenges posed by the tuning of accelerators.This includes the addition of optimization constraints, objective preferences and costs related to changing accelerator parameters.



قيم البحث

اقرأ أيضاً

The fitting of physical models is often done only using a single target observable. However, when multiple targets are considered, the fitting procedure becomes cumbersome, there being no easy way to quantify the robustness of the model for all diffe rent observables. Here, we illustrate that one can jointly search for the best model for each desired observable through multi-objective optimization. To do so we construct the Pareto front to study if there exists a set of parameters of the model that can jointly describe multiple, or all, observables. To alleviate the computational cost, the predicted error for each targeted objective is approximated with a Gaussian process model, as it is commonly done in the Bayesian optimization framework. We applied this methodology to improve three different models used in the simulation of stationary state $cis-trans$ photoisomerization of retinal in rhodopsin. Optimization was done with respect to different experimental measurements, including emission spectra, peak absorption frequencies for the $cis$ and $trans$ conformers, and the energy storage.
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unrel iable approximations. We propose a novel entropy-based MBO called Pareto-frontier entropy search (PFES) by considering the entropy of Pareto-frontier, which is an essential notion of the optimality of the multi-objective problem. Our entropy can incorporate the trade-off relation of the optimal values, and further, we derive an analytical formula without introducing additional approximations or simplifications to the standard entropy search setting. We also show that our entropy computation is practically feasible by using a recursive decomposition technique which has been known in studies of the Pareto hyper-volume computation. Besides the usual MBO setting, in which all the objectives are simultaneously observed, we also consider the decoupled setting, in which the objective functions can be observed separately. PFES can easily adapt to the decoupled setting by considering the entropy of the marginal density for each output dimension. This approach incorporates dependency among objectives conditioned on Pareto-frontier, which is ignored by the existing method. Our numerical experiments show effectiveness of PFES through several benchmark datasets.
The surrogate-assisted optimization algorithm is a promising approach for solving expensive multi-objective optimization problems. However, most existing surrogate-assisted multi-objective optimization algorithms have three main drawbacks: 1) cannot scale well for solving problems with high dimensional decision space, 2) cannot incorporate available gradient information, and 3) do not support batch optimization. These drawbacks prevent their use for solving many real-world large scale optimization problems. This paper proposes a batched scalable multi-objective Bayesian optimization algorithm to tackle these issues. The proposed algorithm uses the Bayesian neural network as the scalable surrogate model. Powered with Monte Carlo dropout and Sobolov training, the model can be easily trained and can incorporate available gradient information. We also propose a novel batch hypervolume upper confidence bound acquisition function to support batch optimization. Experimental results on various benchmark problems and a real-world application demonstrate the efficiency of the proposed algorithm.
In many real-world scenarios, decision makers seek to efficiently optimize multiple competing objectives in a sample-efficient fashion. Multi-objective Bayesian optimization (BO) is a common approach, but many of the best-performing acquisition funct ions do not have known analytic gradients and suffer from high computational overhead. We leverage recent advances in programming models and hardware acceleration for multi-objective BO using Expected Hypervolume Improvement (EHVI)---an algorithm notorious for its high computational complexity. We derive a novel formulation of q-Expected Hypervolume Improvement (qEHVI), an acquisition function that extends EHVI to the parallel, constrained evaluation setting. qEHVI is an exact computation of the joint EHVI of q new candidate points (up to Monte-Carlo (MC) integration error). Whereas previous EHVI formulations rely on gradient-free acquisition optimization or approximated gradients, we compute exact gradients of the MC estimator via auto-differentiation, thereby enabling efficient and effective optimization using first-order and quasi-second-order methods. Our empirical evaluation demonstrates that qEHVI is computationally tractable in many practical scenarios and outperforms state-of-the-art multi-objective BO algorithms at a fraction of their wall time.
Many real-world applications involve black-box optimization of multiple objectives using continuous function approximations that trade-off accuracy and resource cost of evaluation. For example, in rocket launching research, we need to find designs th at trade-off return-time and angular distance using continuous-fidelity simulators (e.g., varying tolerance parameter to trade-off simulation time and accuracy) for design evaluations. The goal is to approximate the optimal Pareto set by minimizing the cost for evaluations. In this paper, we propose a novel approach referred to as information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations (iMOCA)} to solve this problem. The key idea is to select the sequence of input and function approximations for multiple objectives which maximize the information gain per unit cost for the optimal Pareto front. Our experiments on diverse synthetic and real-world benchmarks show that iMOCA significantly improves over existing single-fidelity methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا