ترغب بنشر مسار تعليمي؟ اضغط هنا

D-REX: Dialogue Relation Extraction with Explanations

148   0   0.0 ( 0 )
 نشر من قبل Alon Albalak
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled data. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that about 90% of the time, human annotators prefer D-REXs explanations over a strong BERT-based joint relation extraction and explanation model. Finally, our evaluations on a dialogue relation extraction dataset show that our method is simple yet effective and achieves a state-of-the-art F1 score on relation extraction, improving upon existing methods by 13.5%.



قيم البحث

اقرأ أيضاً

90 - Dian Yu , Kai Sun , Claire Cardie 2020
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross -sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/.
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow extraction of more diverse facts. Very recently, a dataset for multilingual DS-RE has been released. However, our analysis reveals that the proposed dataset exhibits unrealistic characteristics such as 1) lack of sentences that do not express any relation, and 2) all sentences for a given entity pair expressing exactly one relation. We show that these characteristics lead to a gross overestimation of the model performance. In response, we propose a new dataset, DiS-ReX, which alleviates these issues. Our dataset has more than 1.5 million sentences, spanning across 4 languages with 36 relation classes + 1 no relation (NA) class. We also modify the widely used bag attention models by encoding sentences using mBERT and provide the first benchmark results on multilingual DS-RE. Unlike the competing dataset, we show that our dataset is challenging and leaves enough room for future research to take place in this field.
Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.
114 - Xiaoyu Chen , Rohan Badlani 2020
Relation extraction is the task of identifying relation instance between two entities given a corpus whereas Knowledge base modeling is the task of representing a knowledge base, in terms of relations between entities. This paper proposes an architec ture for the relation extraction task that integrates semantic information with knowledge base modeling in a novel manner. Existing approaches for relation extraction either do not utilize knowledge base modelling or use separately trained KB models for the RE task. We present a model architecture that internalizes KB modeling in relation extraction. This model applies a novel approach to encode sentences into contextualized relation embeddings, which can then be used together with parameterized entity embeddings to score relation instances. The proposed CRE model achieves state of the art performance on datasets derived from The New York Times Annotated Corpus and FreeBase. The source code has been made available.
156 - Wang Xu , Kehai Chen , Tiejun Zhao 2020
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past se veral years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا