ﻻ يوجد ملخص باللغة العربية
The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at emulsion and liquid argon experiments that could be located in a future Forward Physics Facility (FPF) downstream of the ATLAS interaction point. The up-scattering of neutrinos off electrons produces an electron recoil signature that can probe new regions of parameter space at the High Luminosity LHC (HL-LHC), particularly for liquid argon detectors due to low momentum thresholds. We also consider the decay of the sterile neutrino through the dipole operator, which leads to a photon that could be displaced from the production vertex. FPF detectors can test sterile neutrino states as heavy as 1 GeV produced through the dipole portal, highlighting the use of high energy LHC neutrinos as probes of new physics.
Motivated by the first observation of coherent-elastic neutrino-nucleus scattering at the COHERENT experiment, we confront the neutrino dipole portal giving rise to the transition of the standard model neutrinos to sterile neutrinos with the recently
Theoretical predictions of the prompt atmospheric neutrino flux have large uncertainties associated with charm hadron production, by far the dominant source of prompt neutrinos in the atmosphere. The flux of cosmic rays, with its steeply falling ener
With the upcoming Run 3 of the LHC, the FASERv and SND@LHC detectors will start a new era of neutrino physics using the far-forward high-energy neutrino beam produced in collisions at ATLAS. This emerging LHC neutrino physics program requires reliabl
Heavy sterile neutrinos are typically invoked to accommodate the observed neutrino masses, by positing a new Yukawa term connecting these new states to the neutrinos in the electroweak doublet. However, given our ignorance of the neutrino sector we s
Proceedings of the 13th International Conference on Elastic and Diffractive Scattering (Blois Workshop) - Moving Forward into the LHC Era