ﻻ يوجد ملخص باللغة العربية
With the upcoming Run 3 of the LHC, the FASERv and SND@LHC detectors will start a new era of neutrino physics using the far-forward high-energy neutrino beam produced in collisions at ATLAS. This emerging LHC neutrino physics program requires reliable estimates of the LHCs forward neutrino fluxes and their uncertainties. In this paper we provide a new fast-neutrino flux simulation, implemented as a RIVET module, to address this issue. We present the expected energy distributions going through the FASERv and SND@LHC detectors based on various commonly used event generators, analyze the origin of those neutrinos, and present the expected neutrino event rates.
The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at e
The following effects in the nearly forward (soft) region of the LHC are proposed to be investigated: 1) At small |t| the fine structure of the cone (Pomeron) shouldbe scrutinized: a) a break of the cone near $tapprox - 0.1 ~ GeV$^2, due to the two-p
Recently the TOTEM experiment at the LHC has released measurements at $sqrt{s} = 13$ TeV of the proton-proton total cross section, $sigma_{tot}$, and the ratio of the real to imaginary parts of the forward elastic amplitude, $rho$. Since then an inte
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formu
The TOTEM experiment with its detectors in the forward region of CMS and the Roman Pots along the beam line will determine the total pp cross-section via the optical theorem by measuring both the elastic cross-section and the total inelastic rate. TO