ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential-based Reward Shaping in Sokoban

96   0   0.0 ( 0 )
 نشر من قبل Zhao Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning to solve sparse-reward reinforcement learning problems is difficult, due to the lack of guidance towards the goal. But in some problems, prior knowledge can be used to augment the learning process. Reward shaping is a way to incorporate prior knowledge into the original reward function in order to speed up the learning. While previous work has investigated the use of expert knowledge to generate potential functions, in this work, we study whether we can use a search algorithm(A*) to automatically generate a potential function for reward shaping in Sokoban, a well-known planning task. The results showed that learning with shaped reward function is faster than learning from scratch. Our results indicate that distance functions could be a suitable function for Sokoban. This work demonstrates the possibility of solving multiple instances with the help of reward shaping. The result can be compressed into a single policy, which can be seen as the first phrase towards training a general policy that is able to solve unseen instances.

قيم البحث

اقرأ أيضاً

Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL). Existing approaches such as potential-based reward shaping normally make full use of a given shaping reward function. However, since the tra nsformation of human knowledge into numeric reward values is often imperfect due to reasons such as human cognitive bias, completely utilizing the shaping reward function may fail to improve the performance of RL algorithms. In this paper, we consider the problem of adaptively utilizing a given shaping reward function. We formulate the utilization of shaping rewards as a bi-level optimization problem, where the lower level is to optimize policy using the shaping rewards and the upper level is to optimize a parameterized shaping weight function for true reward maximization. We formally derive the gradient of the expected true reward with respect to the shaping weight function parameters and accordingly propose three learning algorithms based on different assumptions. Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards, and meanwhile ignore unbeneficial shaping rewards or even transform them into beneficial ones.
75 - Yaron Shoham , Gal Elidan 2021
Despite seminal advances in reinforcement learning in recent years, many domains where the rewards are sparse, e.g. given only at task completion, remain quite challenging. In such cases, it can be beneficial to tackle the task both from its beginnin g and end, and make the two ends meet. Existing approaches that do so, however, are not effective in the common scenario where the strategy needed near the end goal is very different from the one that is effective earlier on. In this work we propose a novel RL approach for such settings. In short, we first train a backward-looking agent with a simple relaxed goal, and then augment the state representation of the forward-looking agent with straightforward hint features. This allows the learned forward agent to leverage information from backward plans, without mimicking their policy. We demonstrate the efficacy of our approach on the challenging game of Sokoban, where we substantially surpass learned solvers that generalize across levels, and are competitive with SOTA performance of the best highly-crafted systems. Impressively, we achieve these results while learning from a small number of practice levels and using simple RL techniques.
In high-dimensional state spaces, the usefulness of Reinforcement Learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the present work, we introduce Final-V olume-Preserving Reward Shaping (FV-RS). FV-RS relaxes the strict optimality guarantees of PB-RS to a guarantee of preserved long-term behavior. Being less restrictive, FV-RS allows for reward shaping functions that are even better suited for improving the sample efficiency of RL algorithms. In particular, we consider settings in which the agent has access to an approximate plan. Here, we use examples of simulated robotic manipulation tasks to demonstrate that plan-based FV-RS can indeed significantly improve the sample efficiency of RL over plan-based PB-RS.
Reward learning is a fundamental problem in robotics to have robots that operate in alignment with what their human user wants. Many preference-based learning algorithms and active querying techniques have been proposed as a solution to this problem. In this paper, we present APReL, a library for active preference-based reward learning algorithms, which enable researchers and practitioners to experiment with the existing techniques and easily develop their own algorithms for various modules of the problem.
For many tasks, the reward function is inaccessible to introspection or too complex to be specified procedurally, and must instead be learned from user data. Prior work has evaluated learned reward functions by evaluating policies optimized for the l earned reward. However, this method cannot distinguish between the learned reward function failing to reflect user preferences and the policy optimization process failing to optimize the learned reward. Moreover, this method can only tell us about behavior in the evaluation environment, but the reward may incentivize very different behavior in even a slightly different deployment environment. To address these problems, we introduce the Equivalent-Policy Invariant Comparison (EPIC) distance to quantify the difference between two reward functions directly, without a policy optimization step. We prove EPIC is invariant on an equivalence class of reward functions that always induce the same optimal policy. Furthermore, we find EPIC can be efficiently approximated and is more robust than baselines to the choice of coverage distribution. Finally, we show that EPIC distance bounds the regret of optimal policies even under different transition dynamics, and we confirm empirically that it predicts policy training success. Our source code is available at https://github.com/HumanCompatibleAI/evaluating-rewards.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا